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• Quantum systems in reality are interacting with an environment (bath) 
⇒ open quantum systems
• These interactions have a deep impact on the system dynamics. 

• Quantum decoherence (Echo dynamics, Girin et al. Phys. Rep. 2006)
• Gate error and error mitigation (Temme et al. PRL 2017)

• The study of open quantum systems starts with the combined system. 
• The combined system usually has large dimension and is difficult to 
prepare and simulate directly.
• The theory of open quantum system attempts to identify models that 
implicitly incorporates the effect of the bath (Breuer & Petruccione). 

Why Open Quantum Systems? 



Example: A single-qubit dynamics

Close	quantum	dynamics
• 𝐻! = − "

#$𝜎%

• 𝜓 0 = &
# 𝑒

'!"# 0 + "
# 𝑒

!"
# |1⟩

• 𝑥 𝑡 = 𝜓 𝑡 𝜎( 𝜓 𝑡 , 𝑦 𝑡 ⋯

With	environment	noise	
(Gaspard-Nagaoka,	JCP	1999)
• Boson bath
• Gaussian noise
• Coupling constant 𝜆 = 0.1

Time-dependent 
Schrödinger

Stochastic 
Schrödinger

Quantum Master Eq., or
Expectation from SSE



Applications outside quantum computing

• Quantum optimal systems
• Quantum electron dynamics (QED)
• Photodection 

• Echo dynamics in NMR 
• Cosmological system 
• Shandera et al 2018 Phys. Rev. D

Electron transport 
• The quantum device is connected 
to leads with different potential

• NEGF from Lindblad (Arrigoni et 
al PRL 2013).
• Stochastic TDDFT (Di Ventra- 
D'Agosta, PRL 2007)  
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ABSTRACT: To describe nonequilibrium transport processes in a
quantum device with infinite baths, we propose to formulate the
problems as a reduced-order problem. Starting with the Liouville-von
Neumann equation for the density-matrix, the reduced-order
technique yields a finite system with open boundary conditions.
We show that with appropriate choices of subspaces, the reduced
model can be obtained systematically from the Petrov-Galerkin
projection. The self-energy associated with the bath emerges
naturally. The results from the numerical experiments indicate that
the reduced models are able to capture both the transient and steady
states.

1. INTRODUCTION
In the past decades, there has been significant progress in the
investigation of molecular electronics and quantum mechanical
transport,1−3 one emerging issue among which is the modeling
of interfaces or junctions between molecular entities.4−7 The
junctions encompass two sections: (i) a molecular core at the
nanometer scale that bridges two metallic devices and (ii) the
surrounding areas from contacting materials. Notable examples
include quantum dots, quantum wires, and molecule-lead
conjunctions. The junctions play an essential role in
determining the functionality and properties of the entire
device and structure, such as photovoltaic cells,8,9 intra-
molecular vibrational relaxation,10−13 infrared chromophore
spectroscopy, and photochemistry.14−17 At such a small spatial
and temporal scale, modeling the transport properties and
processes demands a quantum theory that directly targets the
electronic structures.
Such problems have been traditionally treated with the

Landauer-Büttiker formalism,18−20 which aims at computing
the steady-state of a system interacting with two or more
macroscopic electrodes, and the nonequilibrium Green’s
function (NEGF) approach, which, often based on the tight-
binding (TB) representation, can naturally incorporate the
external potential and predict the steady-state current.21 This
approach was later extended to the first-principle level22−24

using the density-functional theory (DFT).25,26

Due to the dynamic nature and the involvement of electron
excitations, one natural computational framework for transport
problems is the time-dependent density-functional theory
(TDDFT),27−31 which extends the DFT to model electron

dynamics. This effort was initiated by Stefanucci and
Almbladh29,32 and Kurth et al.,27 where the wave functions
are projected into the center and bath regions. An algorithm
was developed to propagate the wave functions confined to the
center region so that the influence from the bath is taken into
account. This is later treated by using the complex absorbing
potential (CAP) method33 by Varga.34 One computational
challenge from this framework is the computation of the initial
eigenstates. Kurth et al.27 addressed this issue by diagonalizing
the Green’s function. However, the normalization is still
nontrivial, since the wave functions also have components in
the bath regions. Another issue is that the CAP method is
usually developed for constant external potentials. For time-
dependent scalar potentials, a gauge transformation is usually
needed to express the absorbing boundary condition,35 and it
is not yet clear how this can be implemented within CAP.
Another framework is based on the Liouville-von Neumann

(LvN) equation36,37 to compute the density-matrix operator
directly. One advantage of the LvN approach is that the initial
density-matrix can be obtained quite easily from the Green’s
function. Therefore, diagonalization and normalization are not
needed. To incorporate the influence of the bath, the LvN
equation has been modified by adding a driving term at the
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• Markovian dynamics from the combined quantum system
• Quantum algorithms

• Time-marching schemes
• First-order scheme
• Higher order approximation in the Kraus form 

• Non-Markovian dynamics
• Stochastic unravelling of non-Markovian dynamics
• Markovian embedding of the memory
• Generalized quantum master equation
• Quantum algorithms

Outline



• Total Hamiltonian: 𝐻 = 𝐻!⊗ 𝐼) + 𝐼!⊗𝐻) + 𝜆𝐻*
• Liouville van Neumann equation

𝑑
𝑑𝑡
𝜌!"! = −𝑖 𝐻!"!, 𝜌!"! ⇒ 𝜌!"! 𝑡 = 𝑈!"! 𝑡 𝜌!"! 0 𝑈!"! 𝑡 #

• Unitary evolution: 𝑈+,+ 𝑡 = exp(−𝑖𝑡𝐻+,+).
• 𝜌+,+ 0 = 𝜌! 0 ⊗ 𝜌) 0 , 𝜌) 0 ∝ exp(−𝛽𝐻))
• System density-operator: 𝜌! 𝑡 = 𝑡𝑟) 𝜌+,+ 𝑡 .
• The Kraus form (Lidar et al 2001 Chem Phys.)

𝜌! 𝑡 =W
-

𝐴-(𝑡)𝜌! 0 𝐴- 𝑡 .

𝑚 𝐴- 𝑡 𝑛 = 𝑚 𝜇 𝑈+,+ 𝑡 𝜈 𝑛 , 𝑖 = 𝜇, 𝜈 . 

System-bath dynamics



• Interaction picture: 𝜌! 𝑡 = 𝑈 𝑡 "𝜌 𝑡 𝑈 𝑡
𝑈 𝑡 = exp−𝑖𝑡(𝐻#⊗ 𝐼$ + 𝐼#⊗𝐻$)

• LvN in the interaction picture 
𝑑
𝑑𝑡
𝜌! = −𝑖𝜆 𝐻! 𝑡 , 𝜌! 𝑡 .

• For example, 𝐻! 𝑡 = 𝑆 t ⊗ 𝐵 𝑡 .
• 𝜌! 𝑡 = 𝜌! 0 − 𝑖𝜆 ∫%

& 𝐻! 𝑡′ , 𝜌! 𝑡′ 𝑑𝑡′

• '
'&
𝜌! = −𝜆( ∫%

& 𝐻! 𝑡 , 𝐻! 𝑡′ , 𝜌! 𝑡′ 𝑑𝑡′
• Assume weak coupling 𝜆 ≪ 1

𝜌! 𝑡 = 𝜌#,! 𝑡 ⊗ 𝜌$ + 𝑂(𝜆)
• In addition, assume that 𝐵 𝑡 , 𝐵 𝑡* ≈ 𝛿(𝑡 − 𝑡*).
• Then '

'&
𝜌#,! = −𝜆(𝑐[𝑆, 𝑆, 𝜌#,! 𝑡 ]

• This is a Lindblad equation in the interaction picture. (Cao-Lu J. Math Phys)

Markovian dynamics 



• Markovian + CPTP ⇒ Lindblad-Gorini-Kossakowski-Sudarshan equation
𝑑
𝑑𝑡 𝜌 = −𝑖 𝐻#, 𝜌 +C

+

𝐿+𝜌𝐿+
" −

1
2 { 𝐿+

"𝐿+ , 𝜌}

• Lindblad equation ⇒ Channel representations?
• Let’s try the Euler’s method
• Time steps: 𝑡%, 𝑡,, ⋯ , 𝑡- = 𝑇; 𝑡. = 𝑛Δ𝑡.	
• Euler: 𝜌./, = 𝜌. + Δ𝑡𝐺𝜌. + Δ𝑡𝜌.𝐺" + Δ𝑡 ∑+ 𝐿+𝜌𝐿+

"

𝐺 = −𝑖𝐻 −
1
2
C
+

𝐿+
"𝐿+

• Kraus form: 
𝜌./, = (𝐼 + Δ𝑡𝐺)𝜌.(𝐼 + Δ𝐺)" + Δ𝑡C

+

𝐿+𝜌𝐿+
" + 𝑂(Δ𝑡()

• 𝐴% = 𝐼 + Δ𝑡 −𝑖𝐻 + 𝐺

• 𝐴+ = Δ𝑡𝐿+

From Lindblad Kraus?



• Classical computation for Lindblad has a complexity that is polynomial 
in the dimension N.
• For example, it involves matrix vector multiplication.
• Quantum algorithms may have complexity 
log𝑁 ⇒ exponential speed  
• Existing methods

• Natural representation (Schlimgen et al PRR 2022)
• Stinespring form (Wang et al, using Ham-generated unitary, PRL 2013)
• Kraus form

• We will consider algorithms with high accuracy and complexity 
estimates. 

Why quantum algorithms



• Lindblad equation: '
'&
𝜌 = ℒ𝜌

• One-step approximation: e0&ℒ𝜌 ≈ ℇ0&𝜌

• Global approximation: e2ℒ𝜌 ≈ ℇ0&
!
"#𝜌

• Stinespring form. 
𝜌 t + Δt = e0&ℒ𝜌 ≈ 𝑡𝑟3(𝑈|0⟩⟨0| ⊗ 𝜌 𝑡 𝑈")

• Only need to specify the first col of 𝑈.
• For example. 𝑈 = exp−𝑖 Δ𝑡𝐽. (Cleve-Wang 2017)
• Global error O TΔ𝑡 .
• Complexity O 4$

5
.

• Improved method (T. Li and Childs 2017): O 4
%
$

5
&
$
.

• Nearly optimal complexity 𝑂(𝑚(𝑞(𝑇 log ,
5
) (Cleve-Wang 2017 ℒ expressed as 

Paulis) 

Time-marching schemes

𝐽 =

Δ𝑡𝐻' 𝐿(
) 𝐿*

) ⋯ 𝐿+
)

𝐿(
𝐿*
⋮
𝐿+



• How to find a higher-order Kraus form?
• A direct time discretization ⇏ CPTP map
• A structure-preserving method (Cao-Lu 2021)
• Decompose a Lindbladian: ℒ = ℒ7 + ℒ8
• ℒ7 = −𝑖𝐻 − "

#
∑-9": 𝐿-

.𝐿- , c	 ; ℒ8𝜌 = ∑-9": 𝐿-𝜌𝐿-
.

Duhamel’s principle

• 𝜌 𝑡 = 𝑒+ℒ$𝜌 0 + ∫$
+ 𝑒 +'+% ℒ$ℒ8𝜌 𝑡" 𝑑𝑡"

• 𝜌 𝑡 = 𝑒+ℒ$𝜌 0 + ∫$
+ 𝑒 +'+% ℒ$ℒ8𝑒+%ℒ$𝜌 0 𝑑𝑡" + 𝑂(𝑡#)

Structure-Preserving Methods



• Repeat for the formula K times
𝜌 𝑡 = 𝑒+ℒ$𝜌 0 + ∑<9"= ∫ 𝑒 +'+& ℒ$ℒ8𝑒 +&'+&'% ℒ$⋯𝜌 0 𝑑𝑡"⋯𝑑𝑡<
								+𝑂( ( 6 & ,-&

7/, !

Observations

• 𝑒+ℒ$𝜌 0 = 𝐷𝜌 0 𝐷., 𝐷 = exp−𝑡(𝑖𝐻 + "
#
∑-9": 𝐿-

.𝐿-)

• It is a CP map in the Kraus form.

• ℒ8𝜌 = ∑-9": 𝐿-𝜌𝐿-
. is also CP in the Kraus form

• A composition of CP maps is CP
• Overall the solution is expressed in a Kraus form. 

Higher-order methods in Kraus form



• The integrals are treated with Gaussian quadrature
• Gaussian quadrature 𝑠$, 𝑠%, ⋯ , 𝑠& , (𝑤$, 𝑤%, ⋯ , 𝑤&)

• ∫'
$𝑓 𝑡 𝑑𝑡 = ∑()$

& 𝑤(𝑓 𝑠( + 𝑂
& *!"

%& !%#"$%
.

• ∫ 𝑒 !,!& ℒ'ℒ.𝑒 !&,!&$% ℒ'⋯𝜌 0 𝑑𝑡$⋯𝑑𝑡/

≈ :
(%)$

&

:
(!)$

&

⋯ :
(&)$

&

𝑤(& , 𝑤 (&,(&$% , ⋯𝑤((&,⋯(%)𝐹/ 𝑠(& , 𝑠 (&,(&$% , ⋯ 𝑠((&,⋯(%) + 𝑂
𝐺 %&2%/𝑡%&4/

𝑘 − 1 ! 2𝑞 !
	

• The sum of the coefficients Σ(%Σ(!⋯Σ(&𝑤(& , 𝑤 (&,(&$% , ⋯𝑤 (&,⋯(% = 5(

64$ !
	

• Truncation: 𝐾, 𝑞 = 789 $/;
789	 789$/;

.

Approximating the integrals



• A general CPTP map in a Kraus form

ℰ𝜌 = 𝐴$𝜌𝐴$
. +W

-9"

>

𝐴-𝜌𝐴-
. .

• Block-encode 𝐴-: 𝐴- ≈ 𝑠- 0 ⊗ 𝐼 𝑈- |0 ⊗ 𝐼
• 𝜇 ∝ ∑- 𝑠- 𝑗 .

• 𝑊 = ∑- 𝑗 𝑗 ⊗ 𝑈- 𝜇 |0⟩ ⊗ 𝐼.

• ∑- 𝑗 𝐴-|𝜓⟩ ≈ 𝐼 ⊗ 0 ⊗ 𝐼 ∑- 𝑗 𝑗 ⊗ 𝑈- 𝜇 |0⟩ 𝜓

• |𝜌?@A⟩ = 𝐴$|𝜓⟩,⋯ , 𝐴- 𝜓 ,⋯ )
• ℰ𝜌= trB(|𝜌?@A⟩⟨𝜌?@A|)

Implementing the Kraus forms



• Norm of the Linbladian: ℒ C@ = 𝛼$ + ∑-9": 𝛼-# .

• Theorem (Li and Wang 2023). Suppose that we have the block 
encodings of 𝐻! and 𝐿-, 𝑗 = 1,2⋯ ,𝑚.	For all 𝑡, 𝜖 > 0,	there is a quantum 
algorithm that yields an approximate density operator 𝜌 𝑡 =
𝑒+ℒ𝜌 0 ,	with error within 𝜖 using 𝑂(𝑡 ℒ C@polylog

D
E
	) queries and 

𝑂(𝑡𝑚 ℒ C@polylog
D
E
	) additional 1- and 2-qubit gates.

Main theorems



• Why non-Markvoian?
• When there is no scale separation, non-Markovian properties emerge. 

• Divergence from standard properties [Gröblacher, non-Ohmic spectral 
density, 2015].
• Measuring non-Markovianity [Breuer 2009]. 
• Modeling a non-Markovian quantum dynamics
• Controlling a non-Markovian dynamics

• There is a backflow of information.
• There is no universal form for the QME.
• It is difficult to preserve the CP property. 
• The form of the equations depends heavily on the bath properties
• Our approach: Stochastic unravelling. 

Non-Markovian dynamics



• A stochastic Schrödinger equation is a more intuitive description
• Stochastic Schrödinger 

𝑖𝑑𝜓 = (𝐻= −
𝑖𝜆%

2
:
()$

>

𝐿(
#𝐿()𝜓𝑑𝑡 + 𝜆:

()$

>

𝐿(𝜓𝑑𝑊(

• The equation is written in the Ito form.
• 𝑑𝑊(: complex-valued white noise (multiplicative)
• SDE: 𝑑𝑧! = 𝑎 𝑧! 𝑑𝑡 + 𝑏 𝑧! ∘ 𝑑𝑊! (Stratonovich)
• Then 𝑧! = 𝑒?)𝑧', (Stochastic flow Kunita 1994)

𝐷! = 𝑡𝑋' +𝑊!𝑋$ +
1
2
O
'

!
𝑠𝑑𝑊@ −O

'

!
𝑊@𝑑𝑠 𝑋', 𝑋$ +⋯

𝑋' = 𝑎 ⋅ ∇A* , 𝑋$ = 𝑏 ⋅ ∇A* .
• Application to SSE (Li and Li PRE 2020).

𝜓 𝑡 = exp −𝑖𝑡𝐻 −
𝑡
2
𝐿# + 𝐿 𝐿 + 𝐿𝑊! + 𝐾 ',$

1
2
𝐿#, 𝐿] 𝐿 + 𝑖 𝐻, 𝐿 + ⋯ |𝜓(0)⟩

• The covariance 𝜌 𝑡 = 𝐸[|𝜓 𝑡 ⟩⟨𝜓(𝑡)|] satisfies Lindblad Eq. 
• Can we use SSE to derive non-Markovian dynamics?

The connection with SSE



• Schrödinger equation 𝑖𝜕&𝛹 = 𝐻𝛹.

• A complete basis in ℋ$.  𝐻$ 𝑛 = 𝜀. 𝑛 , 𝑛 = 𝜒.(𝑟$).

• Expand Ψ = ∑.𝜑. 𝑟#, 𝑡 𝜒. 𝑟$ .

• An infinite set of equations for 𝜑. ⋅, 𝑡  with 

• Assume that 𝐻 = 𝐻#⊗ 𝐼$ + 𝐼#⊗𝐻$ + 𝜆𝑆 ⊗ 𝐵, 0 < 𝜆 ≪ 1.

• Using perturbations: (𝜙 as a realization of 𝜑.) [Gaspard-Nagaoka	1999]

𝑖𝜕&𝜙 = 𝐻#𝜙 − 𝑖𝜆(𝑆"r
%

&
𝐶 𝜏 𝑒9:;.<𝑆𝜙 𝑡 − 𝜏 𝑑𝜏 − 𝑖𝜆𝑆𝜂 𝑡

𝐶 𝑡 = 𝑡𝑟 𝜌$
=>𝐵 𝑡 𝐵 0 .

• The correlation is related to the spectral density
• This NM SSE does not have an exact QME.

Stochastic Schrödinger Equation



• It is typically expensive to solve the non-Markovian SSE directly
• We start with the SSE: 

𝑖𝜕+𝜙 = 𝐻!𝜙 − 𝑖𝜆#𝑆.w
$

+
𝐶 𝜏 𝑒'FGH(𝑆𝜙 𝑡 − 𝜏 𝑑𝜏 − 𝑖𝜆𝑆𝜂 𝑡

• Approximating 𝜂(𝑡) by a complex OU process (Risken)
• 𝑖 ̇𝜁 = −𝛼𝜁 + 𝛾�̇� 𝑡 .	
• If 𝛾# = 2𝐼𝑚 𝛼 , 𝑐 𝑡, 𝑡I = 𝜁 𝑡 ∗𝜁 𝑡I = 𝑒'FK∗(+'+*), 𝑡 ≥ 𝑡I.
• Idea: Use 𝑐 𝑡, 𝑡I  and 𝜁(𝑡) as building blocks to approximate 𝐶(𝑡) and 𝜂 𝑡

• Approximation by exponentials: 
• Set 𝐶 𝑡 = 𝜃#𝑒'FK∗+, 𝜂 𝑡 = 𝜃𝜁 𝑡 .                    

 ⇒ 𝜂 𝑡 ∗𝜂 𝑠 = 𝐶 𝑡 − 𝑠 .
• Define 𝜒 = N

O ∫$
+ 𝐶 𝜏 𝑒'FGH(𝑆𝜙 𝑡 − 𝜏 𝑑𝜏. An auxiliary orbital. 

• Equation for 𝜒: 	 𝑖𝜕+𝜒 = 𝐻! + 𝛼∗ 𝜒 + 𝑖𝜆𝜃𝑆𝜙.

An Embedding Approach



• An extended stochastic system
𝑖𝜕&𝜙 = 𝐻#𝜙 − 𝑖𝜆𝜃𝑆"𝜒 + 𝜆𝜃𝑆𝜙𝜁 𝑡

𝑖𝜕&𝜒 = 𝐻# + 𝛼∗ 𝜒 + 𝑖𝜆𝜃𝑆𝜙.
𝑖 ̇𝜁 = −𝛼𝜁 + 𝛾�̇� 𝑡 .	

• Multiple exponential functions: 
𝐶 𝑡 ≈C

@

𝜃@(𝑒:A/
∗ & .

• The power spectrum

𝐺 𝜔 ( ≈C
@

2𝜃@(𝜈@
𝜔 + 𝜇@ ( + 𝜈@(

• This is a sum of Lorentzians. 
The non-Markovian dynamics is now embedded in an extended, but Markovian 
dynamics.
The computation is much more efficient. 

Approximating the BCF 

 
Ritschel-Eisfeld 2014 JCP 
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Analyt ic Represent at ions of Bat h Cor relat ion Funct ions for Ohmic and Superohmic
Spect ral Densit ies Using Simple Poles

Gerhard Ritschel and Alexander Eisfeld∗
Max Planck Insti tute for the Physics of Complex Systems,

Nöthni tzer Strasse 38, D-01187 Dresden, Germany
(Dated: August 20, 2014)

We present a scheme to express a bath correlat ion funct ion (BCF) corresponding to a given
spect ral density (SD) as a sum of damped harmonic oscillat ions. Such a representat ion is needed,
for example, in many open quantum system approaches. To this end we int roduce a class of fit
funct ions that enables us to model ohmic as well as superohmic behavior. We show that these
funct ions allow for an analyt ic calculat ion of the BCF using pole expansions of the temperature
dependent hyperbolic cotangent . Wedemonst rate how to use these funct ions to fit spect ral densit ies
exemplarily for cases encountered in the descript ion of photosynthet ic light harvest ing complexes.
Finally, we compare absorpt ion spect ra obtained for different fits with exact spect ra and show that
it is crucial to take properly into account the behavior at small frequencies when fit t ing a given SD.

I . IN T RODUCT ION

The influence of an environment on some relevant sys-
tem degrees of freedom is often treated using open quan-
tum system approaches [1–3]. In these open quantum
system models the environment is often modeled as an
infinite number of harmonic oscillators that couple lin-
early to some system degrees of freedom. It is conve-
nient to describe the influence of the environment on
the system using a spectral density (SD) [1–3], which
contains informat ion about the spectrum of the environ-
ment as well as the frequency-dependent coupling. The
definit ion of the spectral density start ing from a micro-
scopic system-environment model is briefly reviewed in
appendix A 1. The basic quant ity entering the open
quantum system approaches is the so-called bath cor-
relat ion funct ion (BCF),

α(t) = 1
π

∞

0
dωJ (ω) coth ω

2T
cos(ωt) − i sin(ωt) ,

(1)
which contains the spectral density (SD) J (ω) as well as
the temperature T. We set = 1 and kB = 1. Note
that sometimes j (ω) = J (ω)/ω2 is denoted as the SD
[41] (e.g. in Ref. [2]), which is more convenient for the
interpretat ion of opt ical propert ies. We will come back
to this point later in this work.
For many numerical methods (see e.g. Refs. [4–10])

that handle these open quantum systems, it is important
that the BCF can be (at least approximately) writ ten as
a finite sum of exponent ials

α(t) ≈
M

m= 1

pm eiωm t , t ≥ 0 (2)

with t ime-independent complex prefactors pm and com-
plex “ frequencies” ωm = Ωm + iγm whereΩm and γm are
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real numbers. Although the BCF Eq. (1) is also defined
for negat ive t imes, it is usually sufficient to represent
the BCF at posit ive t imes, since one can always calcu-
late numerically the part for t < 0 from the symmetry
α(− t) = α∗ (t).
Typically, the numerical cost to calculatepropert ies of

the open quantum system grows rapidly with the num-
ber of exponent ials in Eq. (2). Therefore, the number of
exponent ials M should be as small as possible.
For a general BCF an exact decomposit ion with a fi-

nite number of terms typically cannot be achieved. Nev-
ertheless, one can use the funct ion (2) as a fit funct ion
to the BCF trying to obtain a good fit with as few terms
as possible. To this end one can use non-linear fit rou-
t ines, which are availabe in many program packages, or
use methods designed part icular for this task, such as
filter diagonalizat ion [11, 12]. However, obtaining a di-
rect fit of the BCF is in general not trivial, because the
fit t ing rout ine might depend sensit ively on the init ial fit
parameters (seee.g. also thediscussion in Ref. [13]). Fur-
thermore, it is often not easy to judge the quality of a fit
of the BCF, since for different quant it ies that one wants
to calculate in the end different propert ies of the fit are
important, as will be discussed below.
The Fourier t ransform of the BCF Eq. (1) contains

the same amount of informat ion as the BCF itself and
is typically a funct ion for which fit t ing is more intuit ive.
We have used such a procedure e.g. in Ref. [14].
However, one st ill needs a set of useful fit funct ions.

Furthermore, often one encounters the situat ion that an
SD is given. Using the procedure described above, one
would, for a given temperature, first calculate the exact
BCF, which is then either fit ted direct ly by thesum of ex-
ponent ials, or onewould fit its Fourier transform instead.
Besides the fact that direct fit t ing of these funct ions is
not easy this has to be done for every temperature. It is
therefore desireable to obtain the form (2) direct ly from
the SD in a simple and transparent way. Of course, as
before, one will in general not find an exact result and
one needs to approximate the SD (and the hyperbolic
cotangent in Eq. (1)) with suitable funct ions (some pos-
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a fit is suitable for the quant ity one is actually interested
in. Here one also sees the strength of the fit funct ions
suggested by us.

A . Ohm ic case (n = 1)

For n = 1 the fit funct ions Eq. (3) have a linear de-
pendence around ω= 0.
a. Simple (antisymmetrized) Lorentzian: A form of

Jk (ω) which has been part icularly often used (for exam-
ple in Ref. [4]) is that of a simple Lorentzian

Jk (ω) =
1

(ω− Ωk )2 + γ2k
. (10)

The result ing SD J (ω) is

J (ω) =
k

pk
4Ωω

(ω2 − Ω2)2 + 2(ω2 + Ω2)γ2 + γ4
, (11)

which falls off like 1/ω3 for large frequencies.
b. Drude-Lorentz spectral density: The Drude-

Lorentz SD is given by

JDL (ω) = 2πλω
γ

ω2 + γ2
, (12)

where λ and γ are real parameters. One can write
JDL (ω) = 2πλωγ( 1

(ω− i γ ) (ω+ i γ ) ). Thus, it seems at first
sight that it is of the form of our SDs. However, it is
not since it cannot be brought into the form of Eq. (3).
We have previously used ant i-symmetrized Lorentzians
Eq. (11) to approximate this Drude-Lorentz SD [33].
c. Exponential cutoff Another often used SD is the

ohmic SD with exponent ial cutoff

Johm(ω) = ηωe− ω/ Λ , (13)

where Λ is the cutoff frequency and η scales the overall
strength. In Ref. [4] it has been shown that one can
approximate it very well with three (ant isymmetrized)
Lorentzians of the form of Eq. (11).

B . Superohm ic case

We first turn our at tent ion to the casewhere the spec-
tral density shows a cubic behavior at frequency zero.
Then we discuss a case where the frequency dependence
at zero can not be described by ωn with odd n.
This sect ion also serves to demonstrate that it is in

general quite problemat ic to judge whether a fit of the
BCF is good or not for a specific quant ity that onewants
to calculate for an open quantum system. To this end we
consider absorpt ion spectra. The model Hamiltonian,
which is briefly reviewed in appendix A 1, and the re-
lat ion between the BCF and the absorpt ion spectrum
can be found in many publicat ions (e.g. [2, 34]). We

will see, that in the presented examples a good fit to
j (ω) = J (ω)/ω2 is the relevant quant ity.
In the following we will show for each situat ion the

SD J (ω) as well as j (ω) together with our fit . We will
also show the result ing BCFs (exact and our approxima-
t ions) for three temperatures. Furthermore, we present
the absorpt ion spectra corresponding to these BCFs.
In part icular we consider three different SDs, which

will be discussed in detail in the following subsect ions.
These SDs are shown in the first row of Fig. 3 (a), (b),
(c). Figure 3 (a) represents a damped molecular vibra-
t ion, discussed in subsect ion I I I B 1. In Fig. 3 (b) the
log-normal SD is shown, which hasbeen suggested to de-
scribe the broad background observed in SDs of photo-
synthet ic complexes, on top of which the damped vibra-
t ions sit [29]. This SD is discussed in detail in subsect ion
I I I B 2. Finally, in Fig. 3 (c) the sum of the two pre-
vious SDs is shown, i.e. a damped molecular vibrat ion
sit t ing on a broad background. Such a situat ion, with
more molecular vibrat ions is typical for the SD of light
harvest ing systems [21, 22, 35].
In this Fig. 3 we show in the second row (i.e. pan-

els (d)-(f)) j (ω) = J (ω)/ω2 , the quant it iy that will be
of part icular importance for the absorpt ion spectra. In
the third to the fifth row we show the BCFs at different
temperatures, ranging from T = 4 K in panels (g)-(i),
to T = 77 K in panels (j)-(l) and T = 300 K in panels
(m)-(o).
Absorpt ion spectra corresponding to the background

SD and the SD of the damped vibrat ion are presented in
Figs. 5 and 6.
A brief descript ion of our model system, which essen-

t ially is a two-level molecule, is given in appendix A. For
such a model the absorpt ion spectrum A(ω) is given by
[2]

A(ω) =
1
π
Re

∞

0
dt ei (ω− ω0 ) t e− g(t ) , (14)

whereω0 is related to the transit ion energy between the
two states and the so-called lineshape funct ion g(t) is
given by

g(t) =
t

0
dt

t

0
dt α(t ) (15)

and therefore depends only on the BCF. With the re-
lat ion Eq. (1) between the BCF an the SD we can also
write

g(t) =
− 1
π

∞

0
dωJ (ω)

ω2
coth

ω
2T

cosωt − 1 − i sinωt

− iEλ t
(16)

with the reorganizat ion energy Eλ = 1
π

∞
0 dωJ (ω)/ω.

The reorganizat ion energy Eλ simply leads to a shift of
the whole spectrum and is convenient ly combined with
ω0. For all spectra we show in the following, we set
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Figure 2: Sketch of a damped molecular vibrat ion. In both
potent ial surfaces the vibrat ion relaxes towards the potent ial
minimum. The damping is caused by the coupling of the
coordinate q of the mode to an environment . The potent ial
surfaces are given by Vg(q) = 1

2Ω
2q2 and Ve(q) = 1

2Ω
2(q −

∆ q)2 + ∆ E.

the zero of the frequency axis to the posit ion of the
zero phonon line (which can formally be achieved by
ω0 + Eλ ≡ 0). All presented absorpt ion spectra are nor-
malized to an area of 2π. From Eq. (16) one can expect
that j (ω) = J (ω)/ω2 is indeed the relevant quant it iy for
thecalculat ion of absorpt ion. In fact , in the limit of small
overall coupling st rength/ reorganizat ion energy and zero
temperature the absorpt ion spectrum is given by a delta
peak (zero phonon line) and a phonon wing that has the
shape of J (ω)/ω2 (see appendix B).
Note that for our fit funct ions one can easily calculate

the lineshape funct ion g(t) analyt ically, while in general
it involves integrat ion over oscillat ing funct ions [43].
In all panels of the figures the exact SDs/ BCFs are

shown together with the results of our fit .
In Table I I we list the number of fit terms for the SDs

as well as for the hyperbolic cotangent for all the fits we
consider in this work. Addit ionally, we list the number of
result ing exponent ial terms in the BCFs that we obtain
from our fits for the different considered temperatures.
The explicit fit parameters can be found in the Support-
ing Informat ion [36].

1. Damped molecular vibration

The first SD we consider is that of a vibrat ional mode
related to shifted harmonic potent ial surfaces (with fre-
quency Ω and Huang-Rhys factor X = (Ω∆ q)2/ 2, where
∆ q is the shift of the surfaces, see Fig. 2) that is cou-
pled to an ohmic bath with exponent ial cutoff Johm(ω) =
ηωe− ω/ Λ . Thismodel is discussed e.g. in Ref. [37], where
it is shown that it leads to a spectral density of the form

Jvib (ω) =
X ω2Johm(ω)

(ω− g̃(ω))2 + J 2ohm(ω))
(17)

with g̃(ω) = Ω− ηΛ/ π+ Johm(ω)Ei(ω/ Λ)/ π and Ei(z) =
− ∞

− z dt
e− t
t . This SD has a cubic behavior at small ω

and falls off like e− ω/ω for largeω.
One example of such an SD is shown in Fig. 3 (a)

as solid blue line. The used parameters are η = 0.3,
Λ = 100 cm− 1, Ω = 180 cm− 1 and X = 0.03. They cor-
respond roughly to a low energy vibrat ional mode typical
for bacteriochlorophyll molecules [21, 22, 29, 35]. In ad-
dit ion to the original SD we show a fit with a funct ion
of the form of our Eq. (3) (dashed, black). The parame-
ters used aregiven in Table I. Thedifferencebetween the
original funct ion and our fit is shown in the inset . One
sees that already with three poles one gets a very good
agreement.
As discussed in the int roduct ion, often a different con-

vent ion for the SD is used which corresponds to j (ω) =
J (ω)/ω2 in our notat ion. Weshow this in the second row
(panel (d)).
In the rows 3-5 (panels (g), (j), (m)) we finally show

the corresponding BCFs at three different temperatures.
The imaginary part is plot ted in red and the real part
in blue. With dashed/ dot ted lines the exponent ial fit
obtained from Eq. (6) using the Padé approximat ion is
displayed. For thecaseof 4 K weused eleven Padéterms.
For 77 K two and for 300 K onePadé term wasused. For
all temperatures the exact curves and the exponent ial
approximat ion are in perfect agreement .

2. Log-normal

Another important case is a spectral density of log-
normal form

Jbg(ω) =
πSω√
2πσ

e− [ln(ω/ ωc ]
2 / 2σ2 . (18)

Such a spectral density has been suggested to describe
the broad background obtained when extract ing exper-
imentally the spect ral densit ies of bacteriochlorophyll

damped mode Log-normal combined

n 5 5 n 5
p1 1.27·104 2.42·105 p1 1.27·104

p2 — — p2 2.42·105

ω11 183+ 9.17 i 5.52+ 11.3 i ω11 183+ 9.17 i
ω12 67.6+ 178 i 15.4+ 34.4 i ω12 67.6+ 178 i
ω13 1.76+ 11.1 i 51.7+ 102 i ω13 1.76+ 11.1 i

— — ω21 5.52+ 11.3 i
— — ω22 15.4+ 34.4 i
— — ω23 51.7+ 102 i

Table I: Parameters used to fit the three SDs shown in Fig. 3
(panels (a), (b), (c)). The result ing parameters for the BCFs
shown in Fig. 3 can be found in the Support ing Informa-
t ion [36].
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displayed. For thecaseof 4 K weused eleven Padéterms.
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the broad background obtained when extract ing exper-
imentally the spectral densit ies of bacteriochlorophyll

damped mode Log-normal combined

n 5 5 n 5
p1 1.27·104 2.42·105 p1 1.27·104

p2 — — p2 2.42·105

ω11 183+ 9.17 i 5.52+ 11.3 i ω11 183+ 9.17 i
ω12 67.6+ 178 i 15.4+ 34.4 i ω12 67.6+ 178 i
ω13 1.76+ 11.1 i 51.7+ 102 i ω13 1.76+ 11.1 i

— — ω21 5.52+ 11.3 i
— — ω22 15.4+ 34.4 i
— — ω23 51.7+ 102 i

Table I: Parameters used to fit the three SDs shown in Fig. 3
(panels (a), (b), (c)). The result ing parameters for the BCFs
shown in Fig. 3 can be found in the Support ing Informa-
t ion [36].



• Define an auxiliary orbital: 𝜒** = 𝑖𝜙 𝑡 𝜁 𝑡
• Keep up to 𝒪 𝜆#  terms,

• We obtain linear SDEs.
• 𝒪 𝜆&  approximations, 

Embedding into Linear SSEs

𝑖𝜕!𝜙 = 𝐻=𝜙 − 𝑖𝜆𝜃𝑆#𝜒B − 𝑖𝜆𝜃𝑆𝜒BB
𝑖𝜕!𝜒B = 𝐻= + 𝛼∗ 𝜒B + 𝑖𝜆𝜃𝑆𝜙.

                      𝑖𝜕!𝜒BB = 𝐻= − 𝛼 𝜒BB + 𝑖𝛾𝜙�̇� 𝑡 .	

𝑖𝜕1𝜒2 = 𝐻' + 𝛼∗ 𝜒2 + 𝑖𝜆𝜃𝑆𝜙.
𝑖𝜕1𝜒22 = 𝐻' − 𝛼 𝜒22 − 𝑖𝜆𝜃𝑆)𝜒222 − 𝑖𝜆𝜃𝑆𝜒23 + 𝑖𝛾𝜙�̇� 𝑡 .	
𝑖𝜕1𝜒222 = 𝑖𝜆𝜃𝑆𝜒22 + 𝐻' + 𝛼∗ − 𝛼 𝜒222 + 𝑖𝛾𝜒2�̇� 𝑡 .

𝑖𝜕1𝜒23 = 𝑖𝜆𝜃𝑆)𝜒22 + 𝐻' − 2𝛼 𝜒23 + 2𝑖𝛾𝜒22�̇� 𝑡 .	
 



• Non-Markovian SSE

𝑖
𝑑
𝑑𝑡
𝜓 = 𝐻𝜓 − 𝑖𝜆# W

K,a9"

>

w
$

+
𝐶K,a 𝜏 𝑆K⊺ 𝑒'FGH𝑆a𝜓 𝑡 − 𝜏 𝑑𝜏

+𝜆W
K9"

>

𝜂K 𝑡 𝑆K	𝜓 𝑡 .

• Time correlation: Ε 𝜂K 𝑡 𝜂a 𝑡I . = 𝐶K,a 𝑡 − 𝑡I .

• Approx. BCF: 𝐶 𝑡 ≈ ∑cde
f 𝜃cg|𝑅c⟩⟨𝑅c|𝑒hij!k . 𝐼𝑚𝑑c ≥ 0.

• Auxiliary wave function, {𝜒c,l
m , 𝜒c,l

mm , 𝜒c,l
mmm , 𝜒c,l

mn }

Multiple Jump Operators



• Linearity ⇒ closed form of the density-matrix equation.
• Γ = Ε[|Φ⟩⟨Φ|]. Φ = 𝜙	𝜒*	𝜒** . 𝜌! = Ε[|𝜙⟩⟨𝜙|]. 
• Extended system: 𝑖𝜕+Φ = 𝐻Φ+ ∑<𝑉<𝜙�̇� 𝑡 . Unravelling of NM dynamics

• QME: 𝑖𝜕+Γ = 𝐻Γ − Γ𝐻. + ∑<𝑉<𝜌𝑉<
.. 

• It is not exactly Lindblad. 
• It preserves the positivity.

• The initial condition: Γ 0 =

𝜌!(0)
0

𝜌!(0)
0

𝜌!(0)

. 

• Density: 𝜌! 𝑡 = QΓ 𝑡 𝑄c, 𝑄 = 0 ⊗ 𝐼) is the first diagonal block. 
𝑡𝑟 𝜌! = 1 + 𝑂(𝜆&)

The generalized quantum master eqn (GQME)



• The Hamiltonian 

• 𝐻$ =

𝐻! −𝑖𝜆𝜃"𝑆. 𝜆𝑐"𝑆 −𝑖𝜆𝜃#𝑆. 𝜆𝑐#𝑆 ⋯
𝑖𝜆𝜃"𝑆 𝐻d + 𝛼"∗	 0 0 0 ⋯
𝜆𝑐"𝑆. 0 𝐻d − 𝛼" 0 0 ⋯
𝑖𝜆𝜃#𝑆 0 0 𝐻d + 𝛼#∗ 0 ⋯
𝜆𝑐#𝑆. 0 0 0 𝐻d − 𝛼# ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

• 𝐻 = 𝐼e⊗𝐻! +𝐻e⊗ 𝐼! + 𝑖𝜆∑<𝐷<⊗𝑇< +	 𝑖𝜆 ∑<𝐸<⊗𝑇<
.	

• The space is enlarged to mimic the influence of the environment. 

The GQME (contd)



• Perturbation form: 𝜕+Γ = ℒ$Γ + 𝜆ℒ"Γ
Theorem: The solution of the unperturbed GQME is bounded for all 
time:
  | Γ$ 𝑡 | ≤ 𝐶||Γ$ 0 ||, ∀𝑡 ≥ 0.	
The block of Γ 𝑡 , �𝜌 𝑡  follows unitary evolution. 
The trace is given by: tr Γ$ 𝑡 = 2𝐾 + 1 + ∑"f<f= 𝑒'gh&+.
The trace of Γ 𝑡  has the bound 
        tr Γ 𝑡 = 2𝐾 + 1 + ∑"f<f= 𝑒'gh&+ + 𝑂(𝜆#).
The block of Γ 𝑡 , �𝜌 𝑡 : 𝑡𝑟 �𝜌 𝑡 = 1 + 𝑂(𝜆&).

The properties of the GQME 



• Model Error: From the system dynamics, one can apply an asymptotic 
analysis.

• 𝜌! 𝑡 = 𝜌!
$ 𝑡 + 𝜆𝜌!

" 𝑡 + 𝜆#𝜌!
# 𝑡 + 𝑂 𝜆& .

• The first order term disappears after the partial trace
• The second order term involves the BCF. 
Theorem (Li-Wang 2023). Let �𝜌!(𝑡) be the first diagonal block of 
Γ: �𝜌! = ⟨0 Γ 0⟩. Then

• �𝜌! 𝑡 − 𝜌!
$ 𝑡 + 𝜆#𝜌!

# 𝑡 ≤ 𝐶𝜆&.

• The GQME is consistent with the second order expansion. 

Modeling Error in terms of 𝜆



• Kraus form from an infinitesimal approximation:

𝑀i+𝜌 = 𝐴$𝜌𝐴$
. +W

:

𝐴:𝜌𝐴:
.

• 𝐴$ = 𝐼 − 𝑖Δ𝑡𝐻
• 𝐴: = Δ𝑡𝑉:
• 𝑀i+𝜌 − 𝑒i+j ⋄ ≤ 5 𝐿 #Δ𝑡#. But it can be improved to higher order. 
Theorem (Li-Wang, CMP, 2023). Suppose that we are given the access to 
block encodings of 𝐻! and 𝑆:, m ∈ [𝑀], 𝜆 > 0, 𝑑<, 𝑘 ∈ 𝐾 ,	and 𝜌! 0  that 
exists a quantum algorithm that produces 𝜌! 𝑡 	s. t. �

�
|

|
𝜌! 𝑡 − ⟨

⟩
0|

|
⊗

𝐼Γ 𝑡 0 ⊗ 𝐼 < 𝜖. The algorithm uses 𝑂 𝑡polylog +
E poly 𝑀,𝐾, 𝜆  

queries to 𝐻! and 𝑆:	 and additional 1 and 2-qubit gates. 

Simulating the non-Markovian dynamics



Extensions of Lindblad simulations
• Multiple time scales
• Time-dependent Lindbladians
Non-Markovian QME
• Time local Lindbladians
• Hierarchical equations of motions (HEOM)
What can we use these simulators for?
• Reaching thermal state?
• Control of open quantum systems.
• Quantum error mitigation?
• Electron transport. (how to deal with the nonlinear potential?) 

Open issues
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