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• Dynamics models in computational chemistry
• Classical molecular dynamics (MD)
• Quantum electron dynamics (QED)

• Mori-Zwanzig projection for MD
• Rational approximations of the memory
• Consistency with the fluctuation-dissipation relation
• Subspace projections

• Reduced Liouville von Neumann equation for QED
• Projection for the density-operator
• Long-range interactions
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Models	based	on	first	principles

• Models with molecules/atoms/electrons
• Simple mathematical models. 
• Overwhelming number of degrees of freedom
• Strong interactions.
• Fast inherent time scale (10!"# − 10!"$𝑠)



Dynamics models 

Molecular dynamics

!
̇𝑥! = 𝑣! , 	 𝑥 0 = 𝑥",

𝑚! ̇𝑣! = 𝑓! 𝑥 = −
𝜕𝑉 𝑥
𝜕𝑥!

, 𝑣 0 = 𝑣".

• 𝑥 = 𝑥!, 𝑥", ⋯ , 𝑥# ∈ ℝ$#

• v= 𝑣!, 𝑣", ⋯ , 𝑣#  ∈ ℝ$#

• 𝑉 𝑥 = ∑%,'Φ 𝑥% , 𝑥' + ∑%,',(𝑊(𝑥% , 𝑥' , 𝑥()
• Bond stretching/angles,Coulomb, Lennard-Jones 
• 𝑥), 𝑣) ∼ 𝜌 𝑥), 𝑣) .

Driven	Electron	Dynamics

𝜕#𝜌 𝑡 = −𝑖 𝐻[𝑛(𝑡), 𝑡], 𝜌 𝑡 	
• 𝜌,𝐻 ∈ ℂ$×$	and		𝑛 = diag(𝜌)
• Hermitian property 𝜌 = 𝜌∗, 𝐻 = 𝐻∗
• Hamiltonian from TDDFT
• 𝐻	 = − (

)
∇) + 𝑉*+,-./+𝑉0 𝑛(𝑡) +

𝑉12 𝑛(𝑡) + 𝑈34#(𝑡)
• Hartree : 𝑉0 𝑛 𝑥 = ∫5

6(48)
|4;48|

𝑑𝑥′
• Exchange-correlation: 𝑉12 𝑛
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Perspective	from	Koopman
 I. Mezic 2013; E Kaiser, JN Kutz, SL Brunton 2021.

• Dynamical system: 𝑥%, 𝑣% → 𝑥 𝑡 , 𝑣 𝑡 .
• Coarse-grain variables 𝑎 𝑥(𝑡), 𝑣(𝑡)

• The center of mass of residues (protein dynamics)
• Local displacement and velocity (solid materials)
• Local energy (nano-scale heat conduction)

• Trajectory-wise view: 𝐴(𝑥%, 𝑣%, 𝑡) = 𝑎(𝑥 𝑡 , 𝑣 𝑡 )

• Liouville operator: 𝐿 = 𝑣%𝜕&* +
"
'𝑓 𝑥% 𝜕(*

• Variational equation: 𝜕)𝐴 = 𝐿𝐴.
• In Stat. Mech. This is directly expressed as �̇� 𝑡 = 𝐿𝑎(𝑡).
• The nonlinear ODEs are expressed as linear PDEs.

ΩI

ΩJ



Mori-Zwanzig	projection
(Nakajima	1958,	Mori	1965,	Zwanzig	1973,	Chorin	1998,	Li-E	2007)

Define a projection 𝑃 onto space spanned by 𝑏,
𝑃 ⋅ ≔ ⟨ ⋅ , 𝑏⟩⟨𝑏, 𝑏⟩;(𝑏.

where 𝑔 𝑡 , 𝑏 !< = ∫ 𝑔! 𝑥", 𝑣", 𝑡 𝑏< 𝑥", 𝑣", 0 𝜌 𝑥", 𝑣" 𝑑𝑥"𝑑𝑣".	

Dyson’s formula: 𝑒#(=>?) = ∫"
# 𝑒(#;@)(=>?)𝐴𝑒@?𝑑𝑠 + 𝑒#?.

Dynamics of 𝑎 𝑡 : �̇� 𝑡 = 𝑒#A𝐿𝑎 = 𝑒#A𝑃𝐿𝑎 + 𝑒#A𝑄𝐿𝑎

�̇� 𝑡 = 𝑒#A𝑃𝐿𝑎 + ∫"
# 𝑒#A𝑃𝐿𝑒 #;@ BA𝑄𝐿𝑎 𝑑𝑠 + 𝑒#BA𝑄𝐿𝑎. 

MZ Equations �̇� 𝑡 = Ω𝑏 𝑡 + ∫"
# 𝜃 𝑡 − 𝑠 𝑏 𝑠 𝑑 + 𝑅 𝑡 ,

where 𝛺 = ⟨𝐿𝑎, 𝑏⟩⟨𝑏, 𝑏⟩;(, 𝑅 𝑡 = 𝑒#BA𝑄𝐿𝑎, 𝜃 𝑠 = ⟨𝐿𝑒@BA𝑄𝐿𝑎, 𝑏⟩⟨𝑏, 𝑏⟩;(.



Markovian	embedding

MZ Equations �̇� 𝑡 = Ω𝑏 𝑡 + ∫!
" 𝜃 𝑡 − 𝑠 𝑏 𝑠 𝑑𝑠 + 𝑅 𝑡  (Generalized Langevin)

Laplace transform of the kernel function .𝜃 𝜆 = ∫!
#$𝜃 𝑡 𝑒%"/'𝑑𝑡

Rational approximation 𝑁(,( 𝜆 = 𝐼 − 𝜆𝐵* −⋯− 𝜆(𝐵(
%* 𝐴! + 𝜆𝐴* +⋯+ 𝜆(𝐴(  ≈ .𝜃(𝜆)

q Zeroth order approximation:
• �̇� 𝑡 = 𝛺 + 𝛤 𝑏 𝑡 + 𝐹 𝑡

q First order approximation:
• �̇� 𝑡 = Ω𝑏 𝑡 + 𝑧 𝑡
• �̇� 𝑡 = 𝐴𝑏 𝑡 + 𝐵𝑧 𝑡 + 𝐹(𝑡)

q Higher order approximation:

=�̇� = Ω𝑏 + 𝑒+𝑧
�̇� = 𝐴𝑏 + 𝐵𝑧



How	to	determine	the	coefficients?

• Statistical inference (Kalman filter, Fricks et al 2009, Harlim and Li 2015, Chorin and Lu, 2015, LSTM?)
• Integral equation 

�̇� 𝑡 , 𝑏 0 = Ω 𝑏 𝑡 , 𝑏 0 − 𝜃 ⋆ 𝑎 𝑡 , 𝑏 0
• Moment matching

 Θ 𝜆 = ∫"
>C 𝜃 𝑡 𝑒;#/E𝑑𝑡 = 𝑀(𝜆 +𝑀)𝜆) +⋯

• Pade-Hermite approximation
𝑅F,F = 𝐼 − 𝜆𝐵( −⋯− 𝜆F𝐵F ;([𝜆𝐴( +⋯+ 𝜆F𝐴F]

• Short–time statistics
• 𝑅!,! 0 = Θ(0)

• 𝑅!,!# 0 = Θ#(0)

• 𝑅!,!## 0 = Θ##(0)

§ Long-time statistics

lim
!→#

𝑅$,$ 𝜆 = lim
!→#

Θ 𝜆

These conditions involve the statistics of 𝑎 𝑡  & 𝑏(𝑡)



Results	from	rational	interpolation	(Chu-Li,	2021)	
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Testing the rational approx

• Cabon nano-tube; 
• Tersoff potential;
• 3D atomistic model
• 1D partition 
• 6th order symplectic integrator to 

generate data
• Time correlation of the heat flux



Marginal	density

• 𝑎(𝑡) can be considered as part of (x(t),v(t)). 𝑝 𝑎 = ∫ 𝑝 𝑥, 𝑣 𝛿 𝑎 𝑥, 𝑣 − 𝑎 𝑑𝑥𝑑𝑣
• The PDF of the observations 𝑎(𝑡) can be obtained from data

• Local momentum: Gaussian
• Reaction coordinates: Usually not Gaussian
• Local energy: often follows a Gamma distribution 

• If 𝑏 ∝ 𝑎 ⇒	reduced SDEs: linear drift term
• If the noise is additive ⇒ 𝑎 ∼ 𝑁 𝜇, Σ .
Theorem (Chu & Li, 2019, CMS). There exists 
an SDE system with linear drift and multiplicative
noise, such that the stationary density is a Gamma
distribution.  



Projection	to	potential	of	mean force	(PMF)

• Given data at equilibrium, write 𝜌67 𝑎 = Ξ%!" 𝑒𝑥𝑝 −𝑆 𝑎 .

Define 𝑏 = −
𝛿𝑆 𝑎
𝛿𝑎

−− poten^al of mean force (PMF)

Theorem (Chu & Li, MMS. 2021) 𝜌67 𝑎 	 is guaranteed to be the sta^onary density 
of the Fokker−Planck equa^ons in the reduced models with addi^ve noise.

Zeroth order approximation

�̇� 𝑡 = −Γ HI J
HJ

	+ 𝜎𝜉 𝑡

𝜎𝜎K = Γ + ΓK

𝜌3L 𝑎 = (
M&
exp −𝑆 𝑎

First order approximation

�̇� 𝑡 = 𝑧

�̇� 𝑡 = −𝐴 HI J
HJ

+ 𝐵𝑧 + 𝜎𝜉 𝑡

𝜎𝜎K = 𝐵𝐴 + 𝐴𝐵K

𝜌3L 𝑎, 𝑧 = (
M'
exp −𝑆 𝑎 − (

)
𝑧K𝐴;(𝑧



Imposing	consistent	noise	in	general

• The generalized Langevin: �̇� = Ω𝑎 − ∫"
# 𝜃 𝑡 − 𝑠 𝑎 𝑠 𝑑𝑠 + 𝑅(𝑡)

• The fluctuation-dissipation theorem (FDT): 𝐸 𝑅 𝑡 𝑅 𝑡8 K = 𝑘?𝑇𝜃 𝑡 − 𝑡8 .
• The moment matching condition provides the coefficients of the extended stochastic 

models

g𝜕#𝑎 = Ω𝑎 − 𝑒N𝑧
𝜕#𝑧 = 𝐴𝑎 + 𝐵𝑧 + 𝜎𝜉

• The is a Markovian embedding of the generalized Langevin dynamics
• Lyapunov equation

𝐵𝐴 + 𝐴𝐵K + 𝜎𝜎K = 0.
• It is consistent with the fluctuation dissipation theorem (FDT): When 𝑧(𝑡) is substituted 

into the first equation, one obtains a GLE with the FDT exactly satisfied. 



Galerkin	projection	–	a	fast-slow	model

Langevin dynamics
�̇� = 𝑣
�̇� = 𝑓 𝑥 − Γ𝑣 + 𝜁 𝑡 	 Ε 𝜁 𝑡 𝜁 𝑡, - = 2𝑘.𝑇Γ𝛿 𝑡 − 𝑡, .

Partitioned Langevin:  (Sweet et al JCP 2008)
• 𝑌 = 𝑠𝑝𝑎𝑛 𝜙*, 𝜙/, ⋯ , 𝜙0 . (subspace based on RTB modes)
• 𝑥 = 𝜙𝑞 + 𝜉, 𝑣 = 𝜙𝑝 + 𝜂, 𝜉	𝑎𝑛𝑑	𝜂 ∈ 𝑌1. (𝑞	𝑎𝑛𝑑	𝑝: low modes)
• Effective dynamics 

�̇� = 𝑝

�̇� = 𝜙-𝐹 𝜙𝑞 − 𝐴𝑞 − Γ**𝑝 − S
!

"
𝜃 𝑡 − 𝑠 𝑝 𝑠 𝑑𝑠 + 𝑓 𝑡

Ε 𝑓 𝑡 𝑓 𝑡, - = 2𝑘.𝑇𝜃 𝑡 − 𝑡, + 2𝑘.𝑇Γ**𝛿 𝑡 − 𝑡,

• We can apply the rational interpolation (moment matching) method.  
• Can we apply Galerkin projection?



Reduced-order	formulation
(Feldmann-Freund	1995;	Bai	2002, Gugercin-Antoulas 2004).	

• High modes 𝑦 = (𝜉, 𝜂); low modes: 𝑢 𝑡 = 𝑞, 𝑝 .
• Fast dynamics: 

�̇� = 𝐷𝑦 + 𝑅𝑢 𝑡 + 𝑓/(𝑡)
• Slow dynamics: q̇ = 𝑝, �̇� = 𝜙-𝐹 𝜙𝑞 − Γ**𝑝 + 𝐿𝑦(𝑡) + 𝑓*(𝑡)	
Theorem (Ma-Li-Liu JCP) The coupled dynamics is equivalent to the GLE.
Galerkin: 𝑦 ∈ 𝑠𝑝𝑎𝑛 𝑉*, ⋯ , 𝑉2 ,	such that residual ⊥ 𝑠𝑝𝑎𝑛{𝑊*, ⋯ ,𝑊2}
Projected dynamics: �̇� = �̂�%*�̂�𝑧 + �̂�%*𝑊-𝑅𝑢 𝑡 + .𝑓(𝑡)
The Galerkin project induces an approximation of 𝜃(𝑡) and 𝜁 𝑡 .
Theorem (Ma-Li-Liu JCP 2019) The reduced dynamics satisfies the FDT if �̂��̀�𝑉-𝐿- = 𝑊-𝑄𝐿-.



Relation	to	the	moment-matching

Moment matching

• 𝑀! = 𝜃 0 ,𝑀* = 𝜃, 0 ,⋯ ,𝑀$ = ∫!
#$𝜃 𝑡 𝑑𝑡.	

Approximate kernel
Θ2 𝑠 = 𝑠2𝐼 − 𝑠2%*𝐵! −⋯− 𝐵2%* %*(𝑠2%*𝐶! +⋯+ 𝐶2%*)

Θ2 0 = 𝑀$, 𝜃 ℓ 0 = 𝑀ℓ.
Galerkin with Krylov subspace

• 𝑉* = 𝑅, 𝑉/ = 𝐷𝑅,⋯. 𝑊* = 𝐷%-𝐿-,𝑊/ = 𝐿-,𝑊4 = 𝐷-𝐿-, ⋯
Theorem (Ma-Li-Liu 2019) The reduced dynamics is equivalent to moment matching and it satisfies 
the FDT automatically (𝑛 ≤ 6).
Therefore, the Galerkin projection provides a systematic treatment of the noise. 



Numerical	test	on	Chignolin

186 L. Ma et al. / Journal of Computational Physics 380 (2019) 170–190

Fig. 1. Numerical result for γ = 91, from second order approximation to seventh order approximation, all compared to exact solution. Left: the memory 
kernel function. Right: velocity auto correlation. Both plots are for the third rotation component of the first residue.

Fig. 2. Numerical result for γ = 5. Figures show the comparison of the exact solution, second order approximation and seventh order approximation. Left: 
the memory kernel function. Right: velocity auto correlation. Both plots are for the third rotation component of the first residue.

Fig. 3. Numerical result for γ = 5. Comparison of the second order through seventh order approximations. Left: the memory kernel function. Right: velocity 
auto correlation. Both plots are for the third rotation component of the first residue.
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Galerkin	approach	for	ergodic	dynamics

• Dynamics in the Koopman picture
�̇� = 𝐿𝑎. 𝐿 is a differential operator. 

• Inner product: 𝑓, 𝑔 ≔ 𝐸8+,[𝑓𝑔]

• Projection: 𝑉 = 𝑎 0 , 𝐿𝑎 0 ,⋯ ,𝑊 = 𝐿!"𝑎 0 , 𝑎 0 , 𝐿𝑎 0 .

 𝐿!"𝑎 0 ≈ ∫%
9:𝑒) !;<9= 𝑎 0 𝑑𝑡.

• First order approximation: M�̇� = 𝐾𝑎 + Σ𝜁(𝑡).
• K is related to the correlation length of 𝑎(𝑡).
• In general, the elements of 𝑀 and 𝐾 are statistics of 𝑎 𝑡 .
• Nonlocal statistics can also be incorporated. 

Type	equation	here.



Part II. Reduced-order modeling for electron dynamics

Chu, Weiqi, and Xiantao Li. "Reduced-order modeling approach for electron transport in 
molecular junctions." Journal of Chemical Theory and Computation 16.6 (2020): 3746-3756.
Chu, Weiqi, and Xiantao Li. "A projection-based reduced-order method for electron transport 
problems with long-range interactions." The Journal of Chemical Physics 155.11 (2021).
Wu, Xiaojie, and Xiantao Li. "Absorbing boundary conditions for the time-dependent 
Schrödinger-type equations in R 3." Physical Review E 101.1 (2020): 013304.
Li, Xiantao. "Absorbing boundary conditions for time-dependent Schrödinger equations: A 
density-matrix formulation." The Journal of chemical physics 150.11 (2019).



Absorbing	boundary	conditions

• Semi-discrete formulation: i L
L)
𝜓 = 𝐻𝜓. 	𝐻 =

𝐻<,< 𝐻<,N
𝐻N,< 𝐻N,N

. I: interior; E: exterior

• Exact time-dependent DtN: i LL)𝜓< = 𝐻<,<𝜓< − 𝑖 ∫%
) Γ 𝑡 − 𝜏 𝜓< 𝜏 𝑑𝜏.	

• Krylov subspace + Galerkin ⇒ Absorbing (transparent) boundary conditionsXIAOJIE WU AND XIANTAO LI PHYSICAL REVIEW E 101, 013304 (2020)

FIG. 4. The number of electrons as a function of time.

first-order ABC are computed by interpolation of s = 1, 2.
Four interpolation points s = 1, 2, 3, 10 are used for the
second-order ABC.

Similarly to the 1D case, we still can construct the analyti-
cal solution of Eq. (37),

ψex =
(

i
i − 2t

) 3
2

exp

[
−i

(
x2

1 + x2
2 + x2

3

)
− k0x1 + 1

2 k2
0t

i − 2t

]

(46)

with k0 = 5. One should notice that the difference between the
analytical solution and the exact solution of the discrete model
might not be small due to the large grid spacing. Therefore,
we will only use the analytical solution as a reference for
qualitative comparisons.

For the time integration, the step size is chosen as "t =
0.001. In the first test, we observe how the total electron
density in #I changes in time (Fig. 4). The number of elec-
trons is almost a constant when we fix the wave function at
the boundary (Dirichlet boundary condition). If we impose
the ABC on the system, then the number of electrons will
decrease after the wave function propagates to the boundary.
With the first-order ABC, about 20% of the wave function
in magnitude is reflected. Much more reflections are reduced
by the second-order ABC. Over a longer time period, such
reflections occur multiple times for both the first-order ABC
and the second-order ABC. After that, almost all the electrons
are emitted out of the box.

The top view of surface plots of solutions of 3D time-
dependent Schrödinger equation with different boundary con-
ditions are shown in Fig. 5. The fixed boundary condition
leads to significant reflections. From t = 0.011, it does not
provide any significant results. These errors are reduced by
the absorbing boundary conditions. Some reflections are still
observed in the first-order approximation. The reflections in
the second-order ABC are almost negligible. This experiment
also shows that the proposed ABCs is not sensitive to the pres-
ence of corners and edges along the boundary. Even though
the wave function propagates to the corners, no significant
reflection is observed around the corners.

FIG. 5. Projection of the 3D electron density on x-y plane. Time-
dependent Schrödinger equation with the fixed boundary condition
(first row), the first-order ABC (second row), the second-order ABC
(third row), and the exact solution (last row). The color indicated the
electron density.

C. 3D time-dependent Hartree-Fock model
with localized interactions

The Hartree-Fock equation for a nucleon system can be
formulated from the many-body system by approximating the
many-body wave function with the Slater determinant and
applying the variational principle of the Skyrme functional
[63,67,68] with respect to the wave function. The direct
procedure yields the coupled TDHF equations with localized
interactions,

ih̄
∂

∂t
ϕ j (r, t ) = H (t, ρ)ϕ j (r, t ), j = 1, . . . , A, (47)

where H is the time-dependent one-body HF Hamiltonian.
The one-body Hamiltonian depends on the nucleon density,
given by

ρ(r, t ) =
A∑

j=1

|ϕ j (r, t )|2. (48)

The one-body HF Hamiltonian can be explicitly written as

H = − h̄2

2m
" + 3

4
t0ρ + 3

16
t3ρ2 + Wy + WC . (49)

Here t0 and t3 are the coefficients of the Skyrme interactions
[63,67,68]. Among the five terms in the one-body Hamilto-
nian, the first term is from the kinetic energy. The following
two terms are the expectation value of the zero-range density-
dependent two-body effective interaction. Furthermore, Wy is
the Yukawa potential,

Wy(r) = V0

∫
dr

exp −|r − r′|/a
|r − r′|/a

ρ(r′), (50)
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terms of the interpolation points. The stability will thus be
demonstrated by numerical tests in Sec. IV.

IV. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we test the ABCs with three examples.
For each model, the details regarding the numerical tests are
respectively discussed in Sec. IV A, Sec. IV B, and Sec. IV C.
The three problems are briefly summarized as follows:

(i) A 1D time-dependent Schrödinger equation exten-
sively used as a test example in the literature [24], although
our main emphasis is on Schrödinger equation in R3. The
system is a 1D free electron,

i
∂

∂t
ψ (x, t ) = Ĥψ (x, t ), Ĥ = −∂2

x

2
in R, (36)

with the initial condition ψ0(x) = exp[−(x − xc)2 + ik0(x −
xc)].

(ii) A 3D time-dependent Schrödinger equation consid-
ered in Ref. [40]:

i
∂

∂t
ψ (x, t ) = Ĥψ (x, t ), Ĥ = −∇2

2
in R3, (37)

with the initial condition ψ0(x) = exp(−x2
1 − x2

2 − x2
3 +

ik0x1).
(iii) A 3D time-dependent Hartree-Fock model [63]:

i
∂

∂t
ϕ j (x, t ) = Ĥϕ j (x, t ) in R3, for j = 1, . . . , A, (38)

with the initial condition ϕ0
j determined from the ground state.

The form of Ĥ is given by (49) later in this section. The 3D
TDHF model is a system of nonlinear 3D time-dependent
Schrödinger equations. The Hamiltonian Ĥ depends on the
one-particle wave functions.

Integrators. In general, numerical integrators can be for-
mulated as [64]

φ(n+1) = Uφ(n), (39)

where U is the operator that mimics the time evolution oper-
ator. For linear problems with time-independent potential, the
exact operator is a matrix exponential,

UE (t, t ′) = exp[−i%tH (t ′)]. (40)

One widely used method is the Crank-Nicholson scheme,

UCN = (1 + i%t/2H )−1(1 − i%t/2H ). (41)

For the 3D case, it is often impractical to perform the
matrix inversion in the Crank-Nicholson scheme. In time
dependent density functional theory [1,64,65], one classical
method is the Taylor expansion of the exact integrator,

U5 = I − iH%t − 1
2 H2(%t )2 + 1

6 H3(%t )3 − i 1
24 H4(%t )4.

(42)

Clearly, the operator U5 is not unitary. However, we will
choose %t to be sufficiently small, in which case this integra-
tor is stable and accurate [10]. This allows us to focus more
on the performance of various ABCs.

FIG. 1. An illustration of the model reduction for one-
dimensional Schrödinger equation. ψ is the wave function, initially
supported in the computational domain &I.

A. The 1D time-dependent Schrödinger equation

In the first test, we look at a 1D quantum system. The
setting of the problem is illustrated in Fig. 1.

The analytical solution of Eq. (36) can be explicitly written
as

ψex(x, t ) =
√

i
i − 2t

exp
[−k0(x − xc) + k2

0t − i(x − xc)2

i − 2t

]
,

(43)
assuming the initial condition

ψ0(x) = exp[ik0(x − xc) − (x − xc)2]. (44)

The initial condition ψ0 is localized around xc, which is the
center of the wave packet. k0 is the wave number. In this
test, we set k0 = 5 and xc = −6. The exact solution, ψex,
propagates to the right when k0 > 0. Therefore, we only need
to implement an ABC on the right boundary. A Dirichlet
boundary condition will be imposed on the left.

In our simulations, we pick the interior region to be
&I = [−12, 3] and the exterior domain is &II = (∞,−12) ∪
(3,∞). The Laplacian operator is discretized by the five-point
scheme with grid spacing of h = 0.01.

The evaluation of the DtN map is discussed in our previous
work [66] using the discrete Green’s function. The details of
1D lattice Green’s function will be discussed in the Appendix
B. We select s = 20 for the zeroth-order approximation, two
points s = 10, and 20 for the first-order approximation and
four interpolation points, s = 10, 11, 20, 21, for the second-
order approximation. The zeroth-order approximation corre-
sponds to a complex absorbing potential over two grid points
at the boundary. But we point out that in practice, the latter
method can be applied to a much larger buffer region. In
accordance with the width of the finite-difference stencil, four
and eight extra variables are introduced in the first-order and
second-order approximations, respectively.

The solution computed with the Dirichlet boundary con-
dition is completely reflected back into the interior region
when the wave function propagates to the boundary (Fig. 2).
The zeroth-order approximation causes some reflection when
the wave packet first arrives at the boundary, but most of the
reflection is eliminated eventually. The first-order ABC qual-
itatively captures the transient profile of the exact solution,
with some errors when the wave reaches the boundary. The
second-order ABC provides a much more accurate solution.
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Electron	transport	

• Electron transport in open quantum system
• a quantum system that interacts with another quantum system (bath)

• How to avoid a large number of variables from the bath?
• RoM--> find closed equations to describe the system with much fewer 

variables.
• Time-dependent Schrödinger equation:  𝜕) X𝜓 𝑡 = −𝑖 Y𝐻 𝑡 	 X𝜓(𝑡)	

• Liouville-von Neumann (LvN) equation: 𝜕) Z𝜌 𝑡 = −𝑖 Y𝐻 𝑡 Z𝜌 𝑡 − Z𝜌 𝑡 Y𝐻 𝑡
• Density matrix operator Z𝜌 𝑡 = ∑O 𝑛O X𝜓 𝑡 X𝜓 𝑡 ∗

• Real-space realization: 𝜌 𝑥, 𝑥′, 𝑡 = 𝑥 Z𝜌(𝑡) 𝑥′ , 𝐻 𝑥, 𝑥′, 𝑡 = 𝑥 Y𝐻(𝑡) 𝑥′
• Charge density: 𝑛 𝑥, 𝑡 = 𝜌(𝑥, 𝑥, 𝑡)



Wave-function	approach	vs	density-matrix	approach

• WF: restrict the wave functions to the center region and formally eliminate the part of the wave 
functions in the bath ) (Kurth et al. PRB, 2005). Similar to absorbing boundary conditions.

• Issues: 
ØThe number of wave functions is proportional to the number of electrons.
ØThe wave functions are often extended. 
ØThe initialization of the wave functions. 
DM: restrict the density-matrix to the center region 
Advantages: 
ØThe dimension of the reduced density-matrix only depends on the size of the center region

ØThe initialization is straightforward. 𝜌(0) ∝ f − 5
($-

.

Potential issue: it can be a dense matrix. (Hope for local structure). 
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Liouville	von	Neumann	for	the	entire	system

• Discretize 𝑥 and use a matrix representation 

𝜕)𝜌 𝑡 = −𝑖 𝐻[𝑛(𝑡), 𝑡], 𝜌 𝑡 	

• Matrix representation: 𝜌,𝐻 ∈ ℂQ×Q	and		𝑛 = diag(𝜌)
• Transient (non-equilibrium) nature: external control 𝑈6&)(𝑡) 

• Coupling with the bath 𝜌 =
𝜌S 𝜌TS
𝜌ST 𝜌T , 	 dim 𝜌T ≫ dim{𝜌S}



• Charge density 𝑛 extends to the entire bath.
• The charge perturbation 𝛿𝑛 = 𝑛 − 𝑛%	is compact near the junction area.
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Charge density observation
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A one-dimensional molecular junction that 
contains three Lithium chains Charge density vs location 



• Perturbed density matrix 𝛿𝜌 𝑡 = 𝜌 𝑡 − 𝜌%

• Linear response 𝛿𝐻(𝑡) = 𝐻(𝑡) − 𝐻%, 𝐻%, 𝜌% = 0

• Perturbed LvN equation after dropping higher order terms
𝜕)𝛿𝜌 𝑡 = −𝑖 𝐻%, 𝛿𝜌 𝑡 + 𝛿𝐻 𝑡 , 𝜌% + 𝛿𝐻 𝑡 , 𝛿𝜌

• The bracket is generalized quantum commutator
𝐴, 𝐵 = 𝐴∗𝐵 − 𝐵∗𝐴
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Perturbed dynamics (Linear response)



How	does	reduced-order	modeling	come	in?

• LvN Equation:

• The equation in the left bath
𝑖𝜕"𝛿𝜌66 = 𝐻66, 𝛿𝜌66 + 𝐻67𝛿𝜌76 − 𝛿𝜌67𝐻76 = 𝐻66, 𝛿𝜌66 	+ [𝐻67 , 𝛿𝜌76].	

• Since the matrix 𝐻67 is short ranged, the input can be regarded as low dimensional. 

• The off-diagonal block:
𝑖𝜕"𝛿𝜌67 = 𝐻66	𝛿𝜌67 − 𝛿𝜌66𝐻67 + 𝐻67𝛿𝜌77 − 𝛿𝜌67𝐻77 + Θ67(𝑡).	

• In practice, we only need 𝛿𝜌66𝐻67, which is a low-dimensional output.  
• This is a reduced-order modeling problem.
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indicated in Figure 1. In this case, Eq (7) translates to

i
d

dt

0

BBBB@

�⇢LL �⇢LC �⇢LR

�⇢CL �⇢CC �⇢CR

�⇢RL �⇢RC �⇢RR

1

CCCCA
=

2

66664

0

BBBB@

HLL HLC 0

HCL HCC HCR

0 HRC HRR

1

CCCCA
,

0

BBBB@

�⇢LL �⇢LC �⇢LR

�⇢CL �⇢CC �⇢CR

�⇢RL �⇢RC �⇢RR

1

CCCCA

3

77775
+⇥.

(8) eq: blockLvN

In the case when �H corresponds to scalar potentials in the leads: UL(t) and UR(t), then

the matrix function ⇥(t) can be written as,

⇥(t) =

2

66664

0 UL⇢LC(0) (UL � UR)⇢LR(0)

�UL⇢CL(0) 0 �UR⇢CR(0)

�(UL � UR)⇢RL(0) UR⇢RC(0) 0

3

77775
. (9) eq: Theta(t)

In practice, to mimic the infinite leads, one has to pick much larger regions ⌦L/R to

prevent the finite size e↵ect, e.g., a recurrence. This makes a direct implementation using

Eq (8) impractical and requires model reduction tools to reduce the complexity of the full

problem.

There are six unknown blocks in the density-matrix �⇢ : the blocks �⇢LL (and �⇢RR) are

semi-infinite, and this is where an appropriate reduction is needed. It su�ces to illustrate

the reduction of the degrees of freedom in the left bath. A direct computation yields

i
d

dt
�⇢LL(t) = [HLL(t), �⇢LL(t)] + UL(t), (10) eq: leftLvN

where HLL(t) = HLL(0)+ �HLL(t) and �HLL(t) is the external potential imposed on the left

lead. UL(t) represents the influence from the interior. It can be extracted from (8),

UL(t) = HLC�⇢CL(t)� �⇢LC(t)HCL +⇥LL(t). (11) eq: UL

Typically HLC and HCL are sparse matrices.
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• Solution subspace and	test subspace	𝑉,𝑊 ∈ ℂQ×U, 𝑁 ≫ 𝑛
o 𝛿𝜌 𝑡 = 𝑉𝐷 𝑡 𝑉∗, 𝐷 = 𝐷∗	
o 𝑊∗𝜕)𝛿𝜌 𝑡 𝑊 = 𝑊∗(−𝑖 𝐻%, 𝛿𝜌 𝑡 + 𝛿𝐻 𝑡 , 𝜌% ) 𝑊	

• Reduced dynamics for 𝐷 ∈ ℂU×U	
𝜕)𝐷 𝑡 = −𝑖 𝐻VWW(𝑡), 𝐷 𝑡 − 𝑖Θ 𝑡

• Effective Hamiltonian 𝐻VWW = 𝑊∗𝑉 !"𝑊∗𝐻𝑉

• Driven term Θ 𝑡 = 𝑊∗𝑉 !"𝑊∗ 𝛿𝐻 𝑡 , 𝜌% 𝑊 𝑉∗𝑊 !"

• How do we pick subspaces 𝑉 and 𝑊?
• A domain decomposition-based strategy
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Projected LvN equation



• Include contact region (green) into subspace domain
• Select solution subspace	𝑉 = [0XYZV, ; 𝐼[\VV]9^VYY_`]

• Coarse-grained variables 𝐷 = 𝑉∗𝛿𝜌𝑉 = 𝛿𝜌 ab
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Solution subspace
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Restricted domain m𝐶



• Green’s function G 𝑧 = 𝑧𝐼 − 𝐻 !" is related to the density matrix

𝜌 =
1
2𝜋𝑖

s
ℂ
G 𝑧 𝑑𝑧

• Advanced Green’s function
𝐺d 𝜀 = lim

ef(g)→%_
𝜀𝐼 − 𝐻% !"

• Test space 𝑊 = 𝜀𝐼 − 𝐻% !"𝑉, 𝜀 ∈ ℂ 
• We require Im 𝜀 < 0 to maintain stability (Chu & Li 2020 JCTC)
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Test subspaces



• With 𝑊	and 𝑉 ready, one can simplify terms in the driven LvN eq:
𝜕)𝐷 = −𝑖 𝐻VWW, 𝐷 − 𝑖Θ

• A partition of 𝐻	based on the domain decomposition 𝐻 = 𝐻S 𝐻TS
𝐻ST 𝐻T

	

• Effective Hamiltonian 𝐻VWW	 = 𝐻S + Σ 𝜀
• Self-energy Σ 𝜀 = 𝐻ST 𝜀𝐼 − 𝐻T !"𝐻TS reflects energy enters 
• Non-homogenous term Θ = 𝜀∗𝐼 − 𝐻VWW 𝑊∗ 𝛿𝐻 𝑡 , 𝜌% 𝑊 𝜀 	𝐼 − 𝐻VWW
• Σ, Θ can be computed fast using selective inversion (boundary element). 
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Reduced dynamics



• Simulation of a DC circuit: constant bias 𝑈= = −𝑈j = 0.1	a. u.
• The electron current: 𝐽 𝑥k = −Im(𝜌 𝑥k, 𝑥k9"  / ∆𝑥	

[Chu & Li, 2020, JCPC]
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Observation of the electron current
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• Coulomb interactions play an important role in electron transport and 
other quantum observations, such as Coulomb blockade.

• Dependence on the electron density must be taken into consideration.
o 𝐻 𝑛 = − "

l∇
l + 𝑉m 𝑛 + 𝑉nb 𝑛 + 𝑉]ZoYVp + 𝑈6&) 𝑡

o 𝛿𝐻 𝑛 = 𝑉m 𝛿𝑛 + 𝑉nb 𝑛 − 𝑉nb 𝑛% + 𝑈6&) 𝑡
o 𝑛% is the charge density without the external potential 

• The Coulomb force is a long-range force. Particles in the far end of bath 
have an influence on the system.

• Hartree potential: 𝑉m 𝑛 𝑥 = ∫q
U(&r)
|&!&r|𝑑𝑥
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Coulomb interactions



• Uniform grids in contact regions (previous case) will not work
• Ω ab = Ωb ∪ 𝑥U =	𝑥j + 𝑛𝑎  ∪ 𝑥U =	𝑥= − 𝑛𝑎

• Recover the global electron density using a spline interpolation with 
logarithmic grids
• Ω ab = Ωb ∪ 𝑥j + 𝑎U ∪ 𝑥= − 𝑎U

	

• Reconstruct the Hartree part using quadrature

𝑉m 𝑛 𝑥 = �
q

𝑛(𝑥′)
|𝑥 − 𝑥′|

𝑑𝑥 ≈ �
&-∈q./

𝑤 𝑥, 𝑥u 𝑛(𝑥u)
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Multi-connected domain decomposition



[Chu & Li 2021, JCP]
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Observation of Coulomb blockade



Summary	

• Molecular dynamics
• Generalized Langevin equation can be derived from a projection procedure
• Appropriate projection so that the marginal density is easier to fit.
• Moment matching for the kernel and the FDT
• A Galerkin projection: more robust; automatically satisfies the FDT
• Open issues: Stability; Accuracy; Adaptivity. 

• Electron dynamics
• Partition of the density matrix
• Reduced-order modeling to efficiently mimic the effect of the bath
• Subspace projection; Green’s function.

• Open issues: The subspace can only involve 𝐻(,) 𝑧𝐼 − 𝐻),)
*+𝐻),( . But not higher order inverse.    


