Reduced-order modeling techniques in Computational chemistry

Department of Mathematics
Penn State University
Xli@math.psu.edu

PennState

Outline

- Dynamics models in computational chemistry
- Classical molecular dynamics (MD)
- Quantum electron dynamics (QED)
- Mori-Zwanzig projection for MD
- Rational approximations of the memory
- Consistency with the fluctuation-dissipation relation
- Subspace projections
- Reduced Liouville von Neumann equation for QED
- Projection for the density-operator
- Long-range interactions

Collaborators

Weiqi Chu (Umass)

Huan Lei (MSU)

Lina Ma (Trinity College)

Models based on first principles

- Models with molecules/atoms/electrons
- Simple mathematical models.
- Overwhelming number of degrees of freedom
- Strong interactions.
- Fast inherent time scale ($\left.10^{-18}-10^{-15} s\right)$
Left Reservoir

PennState

Dynamics models

Molecular dynamics
$\begin{cases}\dot{x}_{i}=v_{i}, & x(0)=x_{0} \\ m_{i} \dot{v}_{i}=f_{i}(x)=-\frac{\partial V(x)}{\partial x_{i}}, & v(0)=v_{0} .\end{cases}$

- $x=\left(x_{1}, x_{2}, \cdots, x_{N}\right) \in \mathbb{R}^{3 N}$
- $\mathrm{v}=\left(v_{1}, v_{2}, \cdots, v_{N}\right) \in \mathbb{R}^{3 N}$
- $V(x)=\sum_{i, j} \Phi\left(x_{i}, x_{j}\right)+\sum_{i, j, k} W\left(x_{i}, x_{j}, x_{k}\right)$
- Bond stretching/angles,Coulomb, Lennard-Jones
- $x_{0}, v_{0} \sim \rho\left(x_{0}, v_{0}\right)$.

Driven Electron Dynamics

$$
\partial_{t} \rho(t)=-i[H[n(t), t], \rho(t)]
$$

- $\rho, H \in \mathbb{C}^{N \times N}$ and $n=\operatorname{diag}(\rho)$
- Hermitian property $\rho=\rho^{*}, H=H^{*}$
- Hamiltonian from TDDFT
- $H=-\frac{1}{2} \nabla^{2}+V_{\text {nuclei }}+V_{H}[n(t)]+$ $V_{X C}[n(t)]+U_{\text {ext }}(t)$
- Hartree : $V_{H}[n](x)=\int_{\Omega} \frac{n(x \prime)}{|x-x|} d x^{\prime}$
- Exchange-correlation: $V_{X C}[n]$

PennState

Part I. Coarse-graining molecular dynamics

Ma, Lina, Xiantao Li, and Chun Liu. "The derivation and approximation of coarse-grained dynamics from Langevin dynamics." The Journal of chemical physics 145.20 (2016).
Lei, Huan "Nathan A. Baker, and Xiantao Li. "Data-driven parameterization of the generalized Langevin equation." Proceedings of the National Ácademy of Sciences 113.50 (2016): 14183-14188.
Ma, Lina, Xiantao Li, and Chun Liu. "Coarse-graining Langevin dynamics using reduced-order techniques." Journal of Computational Physics 380 (2019): 170-190.
Chu, Weiqi, and Xiantao Li. "The Mori-Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics." Communications in Mathematical Sciences 17.2 (2019).
Chu, Weiqi, and Xiantao Li. "Nonlinear constitutive models for nano-scale heat conduction." Multiscale Modeling \& Simulation 19.1 (2021): 533-549.
Lei, Huan, and Xiantao Li. "Petrov-Galerkin methods for the construction of non-Markovian dynamics preserving nonlocal statistics." The Journal of Chemical Physics 154.18 (2021)

PennState

Perspective from Koopman

I. Mezic 2013; E Kaiser, JN Kutz, SL Brunton 2021.

- Dynamical system: $\left(x_{0}, v_{0}\right) \rightarrow(x(t), v(t))$.
- Coarse-grain variables $a(x(t), v(t))$
- The center of mass of residues (protein dynamics)
- Local displacement and velocity (solid materials)
- Local energy (nano-scale heat conduction)
- Trajectory-wise view: $A\left(x_{0}, v_{0}, t\right)=a(x(t), v(t))$
- Liouville operator: $L=v_{0} \partial_{x_{0}}+\frac{1}{m} f\left(x_{0}\right) \partial_{v_{0}}$
- Variational equation: $\partial_{t} A=L A$.
- In Stat. Mech. This is directly expressed as $\dot{a}(t)=L a(t)$.
- The nonlinear ODEs are expressed as linear PDEs.

PennState

Mori-Zwanzig projection

(Nakajima 1958, Mori 1965, Zwanzig 1973, Chorin 1998, Li-E 2007)

Define a projection P onto space spanned by b,

$$
P \cdot:=\langle\cdot, b\rangle\langle b, b\rangle^{-1} b .
$$

where $\langle g(t), b\rangle_{i j}=\int g_{i}\left(x_{0}, v_{0}, t\right) b_{j}\left(x_{0}, v_{0}, 0\right) \rho\left(x_{0}, v_{0}\right) d x_{0} d v_{0}$.

Dyson's formula:

$$
e^{t(A+B)}=\int_{0}^{t} e^{(t-s)(A+B)} A e^{s B} d s+e^{t B} .
$$

Dynamics of $a(t): \quad \dot{a}(t)=e^{t L} L a=e^{t L} P L a+e^{t L} Q L a$

$$
\dot{a}(t)=e^{t L} P L a+\int_{0}^{t} e^{t L} P L e^{(t-s) Q L} Q L a d s+e^{t Q L} Q L a .
$$

MZ Equations

$$
\dot{a}(t)=\Omega b(t)+\int_{0}^{t} \theta(t-s) b(s) d+R(t),
$$

where

$$
\Omega=\langle L a, b\rangle\langle b, b\rangle^{-1}, R(t)=e^{t Q L} Q L a, \theta(s)=\left\langle L e^{s Q L} Q L a, b\right\rangle\langle b, b\rangle^{-1} .
$$

PennState

Markovian embedding

MZ Equations $\quad \dot{a}(t)=\Omega b(t)+\int_{0}^{t} \theta(t-s) b(s) d s+R(t)$ (Generalized Langevin)
Laplace transform of the kernel function $\hat{\theta}(\lambda)=\int_{0}^{+\infty} \theta(t) e^{-t / \lambda} d t$
Rational approximation $N_{k, k}(\lambda)=\left(I-\lambda B_{1}-\cdots-\lambda^{k} B_{k}\right)^{-1}\left(A_{0}+\lambda A_{1}+\cdots+\lambda^{k} A_{k}\right) \approx \hat{\theta}(\lambda)$
\square Zeroth order approximation:

$$
\text { - } \dot{a}(t)=(\Omega+\Gamma) b(t)+F(t)
$$

\square First order approximation:

$$
\begin{aligned}
& \text { - } \dot{a}(t)=\Omega b(t)+z(t) \\
& \text { - } \dot{z}(t)=A b(t)+B z(t)+F(t)
\end{aligned}
$$

\square Higher order approximation:

$$
\left\{\begin{array}{c}
\dot{a}=\Omega b+e^{\mathrm{T}} Z \\
\dot{z}=A b+B z
\end{array}\right.
$$

PennState

How to determine the coefficients?

- Statistical inference (Kalman filter, Fricks et al 2009, Harlim and Li 2015, Chorin and Lu, 2015, LSTM?)
- Integral equation

$$
\langle\dot{a}(t), b(0)\rangle=\Omega\langle b(t), b(0)\rangle-\theta \star\langle a(t), b(0)\rangle
$$

- Moment matching

$$
\Theta(\lambda)=\int_{0}^{+\infty} \theta(t) e^{-t / \lambda} d t=M_{1} \lambda+M_{2} \lambda^{2}+\cdots
$$

- Pade-Hermite approximation

$$
R_{k, k}=\left[I-\lambda B_{1}-\cdots-\lambda^{k} B_{k}\right]^{-1}\left[\lambda A_{1}+\cdots+\lambda^{k} A_{k}\right]
$$

- Short-time statistics
- $R_{k, k}(0)=\Theta(0)$
- $R_{k, k}^{\prime}(0)=\Theta^{\prime}(0)$
- $R_{k, k}^{\prime \prime}(0)=\Theta^{\prime \prime}(0)$
- Long-time statistics

$$
\lim _{\lambda \rightarrow \infty} R_{k, k}(\lambda)=\lim _{\lambda \rightarrow \infty} \Theta(\lambda)
$$

These conditions involve the statistics of $a(t) \& b(t)$

PennState

Results from rational interpolation (Chu-Li, 2021)

PennState

Marginal density

- $a(t)$ can be considered as part of $(\mathbf{x}(\mathrm{t}), \mathrm{v}(\mathrm{t})) . p(a)=\int p(x, v) \delta(a(x, v)-a) d x d v$
- The PDF of the observations $a(t)$ can be obtained from data
- Local momentum: Gaussian
- Reaction coordinates: Usually not Gaussian
- Local energy: often follows a Gamma distribution
- If $b \propto a \Rightarrow$ reduced SDEs: linear drift term
- If the noise is additive $\Rightarrow a \sim N(\mu, \Sigma)$.

Theorem (Chu \& Li, 2019, CMS). There exists an SDE system with linear drift and multiplicative noise, such that the stationary density is a Gamma
 distribution.

Projection to potential of mean force (PMF)

- Given data at equilibrium, write $\rho_{e q}(a)=\Xi_{0}^{-1} \exp (-S(a))$.

$$
\text { Define } b=-\frac{\delta S(a)}{\delta a} \text {-- potential of mean force (PMF) }
$$

Theorem (Chu \& Li, MMS. 2021) $\rho_{e q}(a)$ is guaranteed to be the stationary density of the Fokker-Planck equations in the reduced models with additive noise.

Zeroth order approximation

$$
\begin{aligned}
& \dot{a}(t)=-\Gamma \frac{\delta S(a)}{\delta a}+\sigma \xi(t) \\
& \sigma \sigma^{T}=\Gamma+\Gamma^{T} \\
& \rho_{e q}(a)=\frac{1}{\Xi_{0}} \exp [-S(a)]
\end{aligned}
$$

First order approximation

$$
\begin{aligned}
& \dot{a}(t)=z \\
& \dot{z}(t)=-A \frac{\delta S(a)}{\delta a}+B z+\sigma \xi(t) \\
& \sigma \sigma^{T}=B A+A B^{T} \\
& \rho_{e q}(a, z)=\frac{1}{\Xi_{1}} \exp \left[-S(a)-\frac{1}{2} z^{T} A^{-1} z\right]
\end{aligned}
$$

PennState

Imposing consistent noise in general

- The generalized Langevin: $\dot{a}=\Omega a-\int_{0}^{t} \theta(t-s) a(s) d s+R(t)$
- The fluctuation-dissipation theorem (FDT): $E\left[R(t) R\left(t^{\prime}\right)^{T}\right]=k_{B} T \theta\left(t-t^{\prime}\right)$.
- The moment matching condition provides the coefficients of the extended stochastic models

$$
\left\{\begin{aligned}
\partial_{t} a & =\Omega a-e^{\mathrm{T}} z \\
\partial_{t} z & =A a+B z+\sigma \xi
\end{aligned}\right.
$$

- The is a Markovian embedding of the generalized Langevin dynamics
- Lyapunov equation

$$
B A+A B^{T}+\sigma \sigma^{T}=0 .
$$

- It is consistent with the fluctuation dissipation theorem (FDT): When $z(t)$ is substituted into the first equation, one obtains a GLE with the FDT exactly satisfied.

PennState

Galerkin projection - a fast-slow model

Langevin dynamics

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =f(x)-\Gamma v+\zeta(t) \quad \mathrm{E}\left[\zeta(t) \zeta\left(t^{\prime}\right)^{T}\right]=2 k_{B} T \Gamma \delta\left(t-t^{\prime}\right) .
\end{aligned}
$$

Partitioned Langevin: (Sweet et al JCP 2008)

- $Y=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{m}\right\}$. (subspace based on RTB modes)
- $x=\phi q+\xi, v=\phi p+\eta, \xi$ and $\eta \in Y^{\perp}$. (q and p : low modes)
- Effective dynamics

$$
\begin{aligned}
& \dot{q}=p \\
& \dot{p}=\phi^{T} F(\phi q)-A q-\Gamma_{11} p-\int_{0}^{t} \theta(t-s) p(s) d s+f(t) \\
& \mathrm{E}\left[f(t) f\left(t^{\prime}\right)^{T}\right]=2 k_{B} T \theta\left(t-t^{\prime}\right)^{2}+2 k_{B} T \Gamma_{11} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

- We can apply the rational interpolation (moment matching) method.
- Can we apply Galerkin projection?

PennState

Reduced-order formulation

(Feldmann-Freund 1995; Bai 2002, Gugercin-Antoulas 2004).

- High modes $y=(\xi, \eta)$; low modes: $u(t)=(q, p)$.
- Fast dynamics:

$$
\dot{y}=D y+R u(t)+f_{2}(t)
$$

- Slow dynamics: $\dot{\mathrm{q}}=p, \dot{p}=\phi^{T} F(\phi q)-\Gamma_{11} p+L y(t)+f_{1}(t)$

Theorem (Ma-Li-Liu JCP) The coupled dynamics is equivalent to the GLE.
Galerkin: $y \in \operatorname{span}\left\{V_{1}, \cdots, V_{n}\right\}$, such that residual $\perp \operatorname{span}\left\{W_{1}, \cdots, W_{n}\right\}$
Projected dynamics: $\dot{z}=\widehat{M}^{-1} \widehat{D} z+\widehat{M}^{-1} W^{T} R u(t)+\hat{f}(t)$
The Galerkin project induces an approximation of $\theta(t)$ and $\zeta(t)$.
Theorem (Ma-Li-Liu JCP 2019) The reduced dynamics satisfies the FDT if $\widehat{M} \widehat{Q} V^{T} L^{T}=W^{T} Q L^{T}$.

PennState

Relation to the moment-matching

Moment matching

- $M_{0}=\theta(0), M_{1}=\theta^{\prime}(0), \cdots, M_{\infty}=\int_{0}^{+\infty} \theta(t) d t$.

Approximate kernel

$$
\begin{gathered}
\Theta_{n}(s)=\left(s^{n} I-s^{n-1} B_{0}-\cdots-B_{n-1}\right)^{-1}\left(s^{n-1} C_{0}+\cdots+C_{n-1}\right) \\
\Theta_{n}(0)=M_{\infty}, \theta^{(\ell)}(0)=M_{\ell} .
\end{gathered}
$$

Galerkin with Krylov subspace

$$
\cdots V_{1}=R, V_{2}=D R, \cdots, W_{1}=D^{-T} L^{T}, W_{2}=L^{T}, W_{3}=D^{T} L^{T}, \cdots
$$

Theorem (Ma-Li-Liu 2019) The reduced dynamics is equivalent to moment matching and it satisfies the FDT automatically $(n \leq 6)$.
Therefore, the Galerkin projection provides a systematic treatment of the noise.

Numerical test on Chignolin

PennState

Galerkin approach for ergodic dynamics

- Dynamics in the Koopman picture

$$
\dot{a}=L a . L \text { is a differential operator. }
$$

- Inner product: $(f, g):=E_{\mu_{e q}}[f g]$

Type equation here.

- Projection: $V=[a(0), L a(0), \cdots], W=\left[L^{-1} a(0), a(0), L a(0)\right]$.

$$
L^{-1} a(0) \approx \int_{0}^{+\infty} e^{t(-\epsilon I+L)} a(0) d t
$$

- First order approximation: $\mathrm{M} \dot{a}=K a+\Sigma \zeta(t)$.
- K is related to the correlation length of $a(t)$.
- In general, the elements of M and K are statistics of $a(t)$.
- Nonlocal statistics can also be incorporated.

Part II. Reduced-order modeling for electron dynamics

Chu, Weiqi, and Xiantao Li. "Reduced-order modeling approach for electron transport in molecular junctions." Journal of Chemical Theory and Computation 16.6 (2020): 3746-3756.
Chu, Weiqi, and Xiantao Li. "A projection-based reduced-order method for electron transport problems with long-range interactions." The Journal of Chemical Physics 155.11 (2021).
Wu, Xiaojie, and Xiantao Li. "Absorbing boundary conditions for the time-dependent Schrödinger-type equations in R 3." Physical Review E 101.1 (2020): 013304.
Li, Xiantao. "Absorbing boundary conditions for time-dependent Schrödinger equations: A density-matrix formulation." The Journal of chemical physics 150.11 (2019).

Absorbing boundary conditions

- Semi-discrete formulation: $\mathrm{i} \frac{d}{d t} \psi=H \psi . H=\left[\begin{array}{ll}H_{I, I} & H_{I, E} \\ H_{E, I} & H_{E, E}\end{array}\right]$. I: interior; E: exterior
- Exact time-dependent DtN: $\mathrm{i} \frac{d}{d t} \psi_{I}=H_{I, I} \psi_{I}-i \int_{0}^{t} \Gamma(t-\tau) \psi_{I}(\tau) d \tau$.
- Krylov subspace + Galerkin \Rightarrow Absorbing (transparent) boundary conditions

PennState

Electron transport

- Electron transport in open quantum system
- a quantum system that interacts with another quantum system (bath)
- How to avoid a large number of variables from the bath?
- RoM--> find closed equations to describe the system with much fewer variables.
- Time-dependent Schrödinger equation: $\partial_{t} \hat{\psi}(t)=-i \widehat{H}(t) \hat{\psi}(t)$
- Liouville-von Neumann (LvN) equation: $\partial_{t} \hat{\rho}(t)=-i(\widehat{H}(t) \hat{\rho}(t)-\hat{\rho}(t) \widehat{H}(t))$
- Density matrix operator $\hat{\rho}(t)=\sum_{j} n_{j} \hat{\psi}(t) \hat{\psi}(t)^{*}$
- Real-space realization: $\rho\left(x, x^{\prime}, t\right)=\langle x| \widehat{\rho}(t)\left|x^{\prime}\right\rangle, H\left(x, x^{\prime}, t\right)=\langle x| \widehat{H}(t)\left|x^{\prime}\right\rangle$
- Charge density: $n(x, t)=\rho(x, x, t)$

PennState

Wave-function approach vs density-matrix approach

- WF: restrict the wave functions to the center region and formally eliminate the part of the wave functions in the bath) (Kurth et al. PRB, 2005). Similar to absorbing boundary conditions.
- Issues:
$>$ The number of wave functions is proportional to the number of electrons.
$>$ The wave functions are often extended.
$>$ The initialization of the wave functions.
DM: restrict the density-matrix to the center region

Advantages:

$>$ The dimension of the reduced density-matrix only depends on the size of the center region
$>$ The initialization is straightforward. $\rho(0) \propto \mathrm{f}\left(-\frac{H}{k_{B} T}\right)$.
Potential issue: it can be a dense matrix. (Hope for local structure).

PennState

Liouville von Neumann for the entire system

- Discretize x and use a matrix representation

$$
\partial_{t} \rho(t)=-i[H[n(t), t], \rho(t)]
$$

- Matrix representation: $\rho, H \in \mathbb{C}^{N \times N}$ and $n=\operatorname{diag}(\rho)$
- Transient (non-equilibrium) nature: external control $U_{\text {ext }}(t)$
- Coupling with the bath $\rho=\left[\begin{array}{cc}\rho_{S} & \rho_{B S} \\ \rho_{S B} & \rho_{B}\end{array}\right], \operatorname{dim}\left\{\rho_{B}\right\} \gg \operatorname{dim}\left\{\rho_{S}\right\}$

PennState

Charge density observation

- Charge density n extends to the entire bath.
- The charge perturbation $\delta n=n-n_{0}$ is compact near the junction area.

A one-dimensional molecular junction that contains three Lithium chains

Charge density vs location

PennState
 Perturbed dynamics (Linear response)

- Perturbed density matrix $\delta \rho(t)=\rho(t)-\rho_{0}$
- Linear response $\delta H(t)=H(t)-H_{0},\left[H_{0}, \rho_{0}\right]=0$
- Perturbed LvN equation after dropping higher order terms

$$
\partial_{t} \delta \rho(t)=-i\left(\left[H_{0}, \delta \rho(t)\right]+\left[\delta H(t), \rho_{0}\right]+[\delta H(t), \delta \rho]\right)
$$

- The bracket is generalized quantum commutator

$$
[A, B]=A^{*} B-B^{*} A
$$

PennState

How does reduced-order modeling come in?

- LvN Equation:

$$
i \frac{d}{d t}\left(\begin{array}{ccc}
\delta \rho_{L L} & \delta \rho_{L C} & \delta \rho_{L R} \\
\delta \rho_{C L} & \delta \rho_{C C} & \delta \rho_{C R} \\
\delta \rho_{R L} & \delta \rho_{R C} & \delta \rho_{R R}
\end{array}\right)=\left[\left(\begin{array}{ccc}
H_{L L} & H_{L C} & 0 \\
H_{C L} & H_{C C} & H_{C R} \\
0 & H_{R C} & H_{R R}
\end{array}\right),\left(\begin{array}{ccc}
\delta \rho_{L L} & \delta \rho_{L C} & \delta \rho_{L R} \\
\delta \rho_{C L} & \delta \rho_{C C} & \delta \rho_{C R} \\
\delta \rho_{R L} & \delta \rho_{R C} & \delta \rho_{R R}
\end{array}\right)\right]+\Theta .
$$

- The equation in the left bath

$$
i \partial_{t} \delta \rho_{L L}=\left[H_{L L}, \delta \rho_{L L}\right]+H_{L C} \delta \rho_{C L}-\delta \rho_{L C} H_{C L}=\left[H_{L L}, \delta \rho_{L L}\right]+\left[H_{L C}, \delta \rho_{C L}\right]
$$

- Since the matrix $H_{L C}$ is short ranged, the input can be regarded as low dimensional.
- The off-diagonal block:

$$
i \partial_{t} \delta \rho_{L C}=H_{L L} \delta \rho_{L C}-\delta \rho_{L L} H_{L C}+H_{L C} \delta \rho_{C C}-\delta \rho_{L C} H_{C C}+\Theta_{L C}(t)
$$

- In practice, we only need $\delta \rho_{L L} H_{L C}$, which is a low-dimensional output.
- This is a reduced-order modeling problem.

PennState

Projected LvN equation

- Solution subspace and test subspace $V, W \in \mathbb{C}^{N \times n}, N \gg n$
- $\delta \rho(t)=V D(t) V^{*}, D=D^{*}$
- $W^{*} \partial_{t} \delta \rho(t) W=W^{*}\left(-i\left(\left[H_{0}, \delta \rho(t)\right]+\left[\delta H(t), \rho_{0}\right]\right)\right) W$
- Reduced dynamics for $D \in \mathbb{C}^{n \times n}$

$$
\partial_{t} D(t)=-i\left[H_{\mathrm{eff}}(t), D(t)\right]-i \Theta(t)
$$

- Effective Hamiltonian $H_{\text {eff }}=\left(W^{*} V\right)^{-1} W^{*} H V$
- Driven term $\Theta(t)=\left(W^{*} V\right)^{-1} W^{*}\left[\delta H(t), \rho_{0}\right] W\left(V^{*} W\right)^{-1}$
- How do we pick subspaces V and W ?
- A domain decomposition-based strategy

PennState

Solution subspace

- Include contact region (green) into subspace domain
- Select solution subspace $V=\left[0_{\text {blue }} ; I_{\text {green }}+\right.$ yellow $]$
- Coarse-grained variables $D=V^{*} \delta \rho V=\delta \rho_{\tilde{C}}$

PennState

Test subspaces

- Green's function $G(z)=(z I-H)^{-1}$ is related to the density matrix

$$
\rho=\frac{1}{2 \pi i} \oint_{\mathbb{C}} \mathrm{G}(z) d z
$$

- Advanced Green’s function

$$
G^{A}(\varepsilon)=\lim _{\operatorname{Im}(\varepsilon) \rightarrow 0_{-}}\left(\varepsilon I-H_{0}\right)^{-1}
$$

- Test space $W=\left(\varepsilon I-H_{0}\right)^{-1} V, \varepsilon \in \mathbb{C}$
- We require $\operatorname{Im}(\varepsilon)<0$ to maintain stability (Chu \& Li 2020 JCTC)

PennState

Reduced dynamics

- With W and V ready, one can simplify terms in the driven LvN eq:

$$
\partial_{t} D=-i\left[H_{\mathrm{eff}}, D\right]-i \Theta
$$

- A partition of H based on the domain decomposition $H=\left[\begin{array}{cc}H_{S} & H_{B S} \\ H_{S B} & H_{B}\end{array}\right]$
- Effective Hamiltonian $H_{\text {eff }}=H_{S}+\Sigma(\varepsilon)$
- Self-energy $\Sigma(\varepsilon)=H_{S B}\left(\varepsilon I-H_{B}\right)^{-1} H_{B S}$ reflects energy enters
- Non-homogenous term $\Theta=\left(\varepsilon^{*} I-H_{\text {eff }}\right) W^{*}\left[\delta H(t), \rho_{0}\right] W\left(\varepsilon I-H_{\text {eff }}\right)$
- Σ, Θ can be computed fast using selective inversion (boundary element).

PennState

Observation of the electron current

- Simulation of a DC circuit: constant bias $U_{L}=-U_{R}=0.1$ a. u.
- The electron current: $J\left(x_{i}\right)=-\operatorname{Im}\left(\rho\left(x_{i}, x_{i+1}\right) / \Delta x\right.$
[Chu \& Li, 2020, JCPC]

PennState

Coulomb interactions

- Coulomb interactions play an important role in electron transport and other quantum observations, such as Coulomb blockade.
- Dependence on the electron density must be taken into consideration.
- $H[n]=-\frac{1}{2} \nabla^{2}+V_{H}[n]+V_{X C}[n]+V_{\text {nuclei }}+U_{\text {ext }}(t)$
- $\delta H[n]=V_{H}[\delta n]+V_{X C}[n]-V_{X C}\left[n_{0}\right]+U_{\text {ext }}(t)$
- n_{0} is the charge density without the external potential
- The Coulomb force is a long-range force. Particles in the far end of bath have an influence on the system.
- Hartree potential: $V_{H}[n](x)=\int_{\Omega} \frac{n(x \mid)}{|x-x|} d x$

PennState

Multi-connected domain decomposition

- Uniform grids in contact regions (previous case) will not work
- $\Omega_{\tilde{C}}=\Omega_{C} \cup\left\{x_{n}=x_{R}+n a\right\} \cup\left\{x_{n}=x_{L}-n a\right\}$

```
XXXX XXXXXXX XXXX
```

- Recover the global electron density using a spline interpolation with logarithmic grids
- $\Omega_{\tilde{C}}=\Omega_{C} \cup\left\{x_{R}+a^{n}\right\} \cup\left\{x_{L}-a^{n}\right\}$

| x | x | x | x | $\mathbf{x X X X X X X}$ | x | x | x | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Reconstruct the Hartree part using quadrature

$$
V_{H}[n](x)=\int_{\Omega} \frac{n\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|} d x \approx \sum_{x_{\alpha} \in \Omega_{\widetilde{C}}} w\left(x, x_{\alpha}\right) n\left(x_{\alpha}\right)
$$

PennState

Observation of Coulomb blockade

[Chu \& Li 2021, JCP]

PennState

Summary

- Molecular dynamics
- Generalized Langevin equation can be derived from a projection procedure
- Appropriate projection so that the marginal density is easier to fit.
- Moment matching for the kernel and the FDT
- A Galerkin projection: more robust; automatically satisfies the FDT
- Open issues: Stability; Accuracy; Adaptivity.
- Electron dynamics
- Partition of the density matrix
- Reduced-order modeling to efficiently mimic the effect of the bath
- Subspace projection; Green's function.
- Open issues: The subspace can only involve $H_{C, L}\left(z I-H_{L, L}\right)^{-1} H_{L, C}$. But not higher order inverse.

