

Reduced-order modeling techniques in Computational chemistry

Department of Mathematics

Penn State University

Xli@math.psu.edu

Outline

- Dynamics models in computational chemistry
 - Classical molecular dynamics (MD)
 - Quantum electron dynamics (QED)
- Mori-Zwanzig projection for MD
 - Rational approximations of the memory
 - Consistency with the fluctuation-dissipation relation
 - Subspace projections
- Reduced Liouville von Neumann equation for QED
 - Projection for the density-operator
 - Long-range interactions

Collaborators

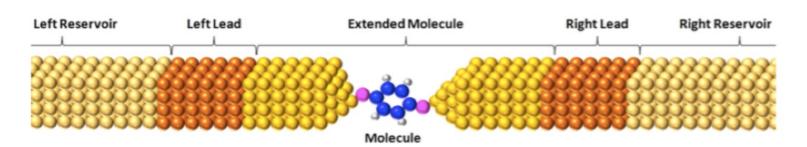
Weiqi Chu (Umass)

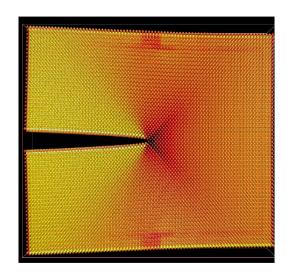
Huan Lei (MSU)

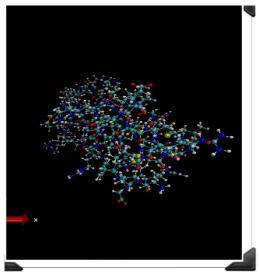
Lina Ma (Trinity College)

Models based on first principles

- Models with molecules/atoms/electrons
- Simple mathematical models.
- Overwhelming number of degrees of freedom
- Strong interactions.
- Fast inherent time scale $(10^{-18} 10^{-15}s)$







Dynamics models

Molecular dynamics

$$\begin{cases} \dot{x_i} = v_i, & x(0) = x_0, \\ m_i \dot{v_i} = f_i(x) = -\frac{\partial V(x)}{\partial x_i}, & v(0) = v_0. \end{cases}$$

•
$$x = (x_1, x_2, \cdots, x_N) \in \mathbb{R}^{3N}$$

- $\mathbf{v} = (v_1, v_2, \cdots, v_N) \in \mathbb{R}^{3N}$
- $V(x) = \sum_{i,i} \Phi(x_i, x_i) + \sum_{i,i,k} W(x_i, x_i, x_k)$
- Bond stretching/angles,Coulomb, Lennard-Jones
- $x_0, v_0 \sim \rho(x_0, v_0)$.

Driven Electron Dynamics

 $\partial_t \rho(t) = -i[H[n(t), t], \rho(t)]$

- $\rho, H \in \mathbb{C}^{N \times N}$ and $n = \operatorname{diag}(\rho)$
- Hermitian property $\rho = \rho^*, H = H^*$ •
- Hamiltonian from TDDFT
- $H = -\frac{1}{2}\nabla^2 + V_{\text{nuclei}} + V_H[n(t)] +$ $V_{XC}[n(t)] + U_{ext}(t)$
- Hartree : $V_H[n](x) = \int_{\Omega} \frac{n(x')}{|x-x'|} dx'$ Exchange-correlation: $V_{XC}[n]$

Part I. Coarse-graining molecular dynamics

Ma, Lina, Xiantao Li, and Chun Liu. "The derivation and approximation of coarse-grained dynamics from Langevin dynamics." *The Journal of chemical physics* 145.20 (2016).

Lei, Huan, Nathan A. Baker, and Xiantao Li. "Data-driven parameterization of the generalized Langevin equation." *Proceedings of the National Academy of Sciences* 113.50 (2016): 14183-14188.

Ma, Lina, Xiantao Li, and Chun Liu. "Coarse-graining Langevin dynamics using reduced-order techniques." *Journal of Computational Physics* 380 (2019): 170-190.

Chu, Weiqi, and Xiantao Li. "The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics." *Communications in Mathematical Sciences* 17.2 (2019).

Chu, Weiqi, and Xiantao Li. "Nonlinear constitutive models for nano-scale heat conduction." *Multiscale Modeling & Simulation* 19.1 (2021): 533-549.

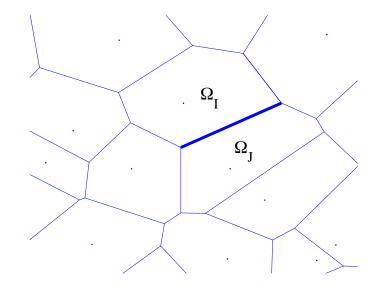
Lei, Huan, and Xiantao Li. "Petrov–Galerkin methods for the construction of non-Markovian dynamics preserving nonlocal statistics." *The Journal of Chemical Physics* 154.18 (2021)

PennState

Perspective from Koopman

I. Mezic 2013; E Kaiser, JN Kutz, SL Brunton 2021.

- Dynamical system: $(x_0, v_0) \rightarrow (x(t), v(t))$.
- Coarse-grain variables a(x(t), v(t))
 - The center of mass of residues (protein dynamics)
 - Local displacement and velocity (solid materials)
 - Local energy (nano-scale heat conduction)
- Trajectory-wise view: $A(x_0, v_0, t) = a(x(t), v(t))$
- Liouville operator: $L = v_0 \partial_{x_0} + \frac{1}{m} f(x_0) \partial_{v_0}$
- Variational equation: $\partial_t A = LA$.
- In Stat. Mech. This is directly expressed as $\dot{a}(t) = La(t)$.
- The nonlinear ODEs are expressed as linear PDEs.



Mori-Zwanzig projection

(Nakajima 1958, Mori 1965, Zwanzig 1973, Chorin 1998, Li-E 2007)

Define a projection P onto space spanned by b,

 $P ::= \langle \cdot, b \rangle \langle b, b \rangle^{-1} b.$ where $\langle g(t), b \rangle_{ij} = \int g_i(x_0, v_0, t) b_j(x_0, v_0, 0) \rho(x_0, v_0) dx_0 dv_0.$

Dyson's formula: $e^{t(A+B)} = \int_{0}^{t} e^{(t-s)(A+B)} A e^{sB} ds + e^{tB}.$ Dynamics of a(t): $\dot{a}(t) = e^{tL} La = e^{tL} P La + e^{tL} Q La$ $\dot{a}(t) = e^{tL} P La + \int_{0}^{t} e^{tL} P L e^{(t-s)QL} Q La ds + e^{tQL} Q La.$ MZ Equations $\dot{a}(t) = \Omega b(t) + \int_{0}^{t} \theta(t-s)b(s)d + R(t),$ where $\Omega = \langle La, b \rangle \langle b, b \rangle^{-1}, R(t) = e^{tQL} Q La, \theta(s) = \langle Le^{sQL} Q La, b \rangle \langle b, b \rangle^{-1}.$

Markovian embedding

MZ Equations $\dot{a}(t) = \Omega b(t) + \int_0^t \theta(t-s)b(s)ds + R(t)$ (Generalized Langevin) Laplace transform of the kernel function $\hat{\theta}(\lambda) = \int_0^{+\infty} \theta(t)e^{-t/\lambda}dt$ Rational approximation $N_{k,k}(\lambda) = (I - \lambda B_1 - \dots - \lambda^k B_k)^{-1}(A_0 + \lambda A_1 + \dots + \lambda^k A_k) \approx \hat{\theta}(\lambda)$ \Box Zeroth order approximation:

• $\dot{a}(t) = (\Omega + \Gamma)b(t) + F(t)$

□ First order approximation:

•
$$\dot{a}(t) = \Omega b(t) + z(t)$$

• $\dot{z}(t) = Ab(t) + Bz(t) + F(t)$

☐ Higher order approximation:

$$\begin{cases} \dot{a} = \Omega b + e^{\mathrm{T}}z \\ \dot{z} = Ab + Bz \end{cases}$$

How to determine the coefficients?

- Statistical inference (Kalman filter, Fricks et al 2009, Harlim and Li 2015, Chorin and Lu, 2015, LSTM?)
- Integral equation

$$\langle \dot{a}(t), b(0) \rangle = \Omega \langle b(t), b(0) \rangle - \theta \star \langle a(t), b(0) \rangle$$

Moment matching

$$\Theta(\lambda) = \int_0^{+\infty} \theta(t) e^{-t/\lambda} dt = M_1 \lambda + M_2 \lambda^2 + \cdots$$

• Pade-Hermite approximation

$$R_{k,k} = [I - \lambda B_1 - \dots - \lambda^k B_k]^{-1} [\lambda A_1 + \dots + \lambda^k A_k]$$

<u>Short–time statistics</u>

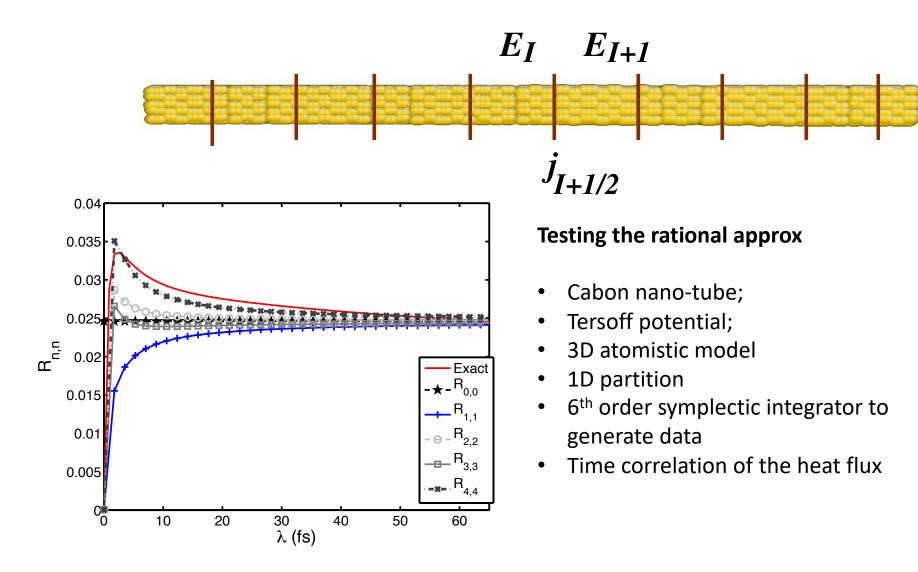
Long-time statistics

- $R_{k,k}(0) = \Theta(0)$
- $R'_{k,k}(0) = \Theta'(0)$
- $R_{k,k}''(0) = \Theta''(0)$

$$\lim_{\lambda \to \infty} R_{k,k}(\lambda) = \lim_{\lambda \to \infty} \Theta(\lambda)$$

These conditions involve the statistics of a(t) & b(t)

Results from rational interpolation (Chu-Li, 2021)

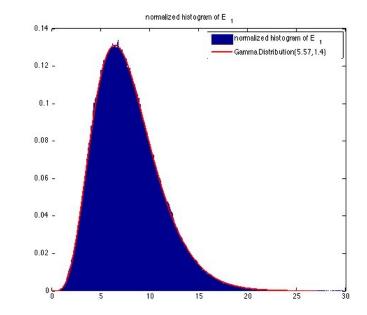


Marginal density

PennState

- a(t) can be considered as part of (x(t),v(t)). $p(a) = \int p(x,v)\delta(a(x,v) a)dxdv$
- The PDF of the observations a(t) can be obtained from data
 - Local momentum: Gaussian
 - Reaction coordinates: Usually not Gaussian
 - Local energy: often follows a Gamma distribution
- If $b \propto a \Rightarrow$ reduced SDEs: linear drift term
- If the noise is additive $\Rightarrow a \sim N(\mu, \Sigma)$.

Theorem (Chu & Li, 2019, CMS). There exists an SDE system with linear drift and <u>multiplicative</u> noise, such that the stationary density is a Gamma distribution.



Projection to potential of mean force (PMF)

• Given data at equilibrium, write $\rho_{eq}(a) = \Xi_0^{-1} exp(-S(a))$.

Define $b = -\frac{\delta S(a)}{\delta a}$ -- potential of mean force (PMF) **Theorem** (Chu & Li, MMS. 2021) $\rho_{eq}(a)$ is guaranteed to be the stationary density of the Fokker-Planck equations in the reduced models with additive noise.

Zeroth order approximation

 $\dot{a}(t) = -\Gamma \frac{\delta S(a)}{\delta a} + \sigma \xi(t)$ $\sigma \sigma^{T} = \Gamma + \Gamma^{T}$ $\rho_{eq}(a) = \frac{1}{\Xi_{0}} \exp[-S(a)]$

First order approximation

$$\begin{split} \dot{a}(t) &= z \\ \dot{z}(t) &= -A \frac{\delta S(a)}{\delta a} + Bz + \sigma \xi(t) \\ \sigma \sigma^T &= BA + AB^T \\ \rho_{eq}(a,z) &= \frac{1}{\Xi_1} \exp\left[-S(a) - \frac{1}{2} z^T A^{-1} z\right] \end{split}$$

Imposing consistent noise in general

- The generalized Langevin: $\dot{a} = \Omega a \int_0^t \theta(t-s)a(s)ds + R(t)$
- The fluctuation-dissipation theorem (FDT): $E[R(t)R(t')^T] = k_B T\theta(t t')$.
- The moment matching condition provides the coefficients of the extended stochastic models

$$\begin{cases} \partial_t a = \Omega a - e^{\mathrm{T}}z \\ \partial_t z = Aa + Bz + \sigma\xi \end{cases}$$

- The is a Markovian embedding of the generalized Langevin dynamics
- Lyapunov equation

$$BA + AB^T + \sigma\sigma^T = 0.$$

• It is consistent with the **fluctuation dissipation theorem (FDT)**: When z(t) is substituted into the first equation, one obtains a GLE with the FDT exactly satisfied.

Galerkin projection – a fast-slow model

Langevin dynamics

 $\dot{x} = v$ $\dot{v} = f(x) - \Gamma v + \zeta(t) \quad \mathbf{E}[\zeta(t)\zeta(t')^T] = 2k_B T \Gamma \delta(t - t').$

Partitioned Langevin: (Sweet et al JCP 2008)

- $Y = span\{\phi_1, \phi_2, \dots, \phi_m\}$. (subspace based on RTB modes)
- $x = \phi q + \xi$, $v = \phi p + \eta$, ξ and $\eta \in Y^{\perp}$. (q and p: low modes)
- Effective dynamics

$$\begin{split} \dot{q} &= p \\ \dot{p} &= \phi^T F(\phi q) - Aq - \Gamma_{11} p - \int_0^t \theta(t-s) p(s) ds + f(t) \\ & \mathbf{E}[f(t)f(t')^T] = 2k_B T \theta(t-t') + 2k_B T \Gamma_{11} \delta(t-t') \end{split}$$

- We can apply the rational interpolation (moment matching) method.
- Can we apply Galerkin projection?

Reduced-order formulation

(Feldmann-Freund 1995; Bai 2002, Gugercin-Antoulas 2004).

- High modes $y = (\xi, \eta)$; low modes: u(t) = (q, p).
- Fast dynamics:

 $\dot{y} = Dy + \frac{Ru(t)}{t} + f_2(t)$

• Slow dynamics: $\dot{q} = p$, $\dot{p} = \phi^T F(\phi q) - \Gamma_{11}p + Ly(t) + f_1(t)$

Theorem (Ma-Li-Liu JCP) The coupled dynamics is equivalent to the GLE.

Galerkin: $y \in span\{V_1, \dots, V_n\}$, such that residual $\perp span\{W_1, \dots, W_n\}$

Projected dynamics: $\dot{z} = \widehat{M}^{-1}\widehat{D}z + \widehat{M}^{-1}W^TRu(t) + \widehat{f}(t)$

The Galerkin project induces an approximation of $\theta(t)$ and $\zeta(t)$.

Theorem (Ma-Li-Liu JCP 2019) The reduced dynamics satisfies the FDT if $\widehat{M}\widehat{Q}V^TL^T = W^TQL^T$.

Relation to the moment-matching

Moment matching

•
$$M_0 = \theta(0), M_1 = \theta'(0), \cdots, M_\infty = \int_0^{+\infty} \theta(t) dt.$$

Approximate kernel

$$\Theta_n(s) = (s^n I - s^{n-1} B_0 - \dots - B_{n-1})^{-1} (s^{n-1} C_0 + \dots + C_{n-1})$$

$$\Theta_n(0) = M_{\infty}, \theta^{(\ell)}(0) = M_{\ell}.$$

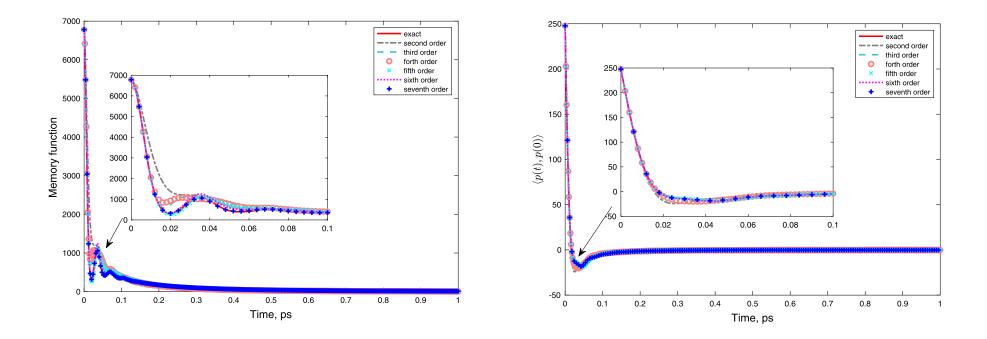
Galerkin with Krylov subspace

•
$$V_1 = R, V_2 = DR, \dots, W_1 = D^{-T}L^T, W_2 = L^T, W_3 = D^TL^T, \dots$$

Theorem (Ma-Li-Liu 2019) The reduced dynamics is equivalent to moment matching and it satisfies the FDT automatically ($n \le 6$).

Therefore, the Galerkin projection provides a systematic treatment of the noise.

Numerical test on Chignolin



Galerkin approach for ergodic dynamics

• Dynamics in the Koopman picture

 $\dot{a} = La. L$ is a differential operator.

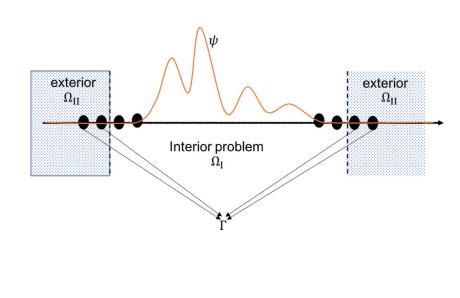
- Inner product: $(f,g) \coloneqq E_{\mu_{eq}}[fg]$ Type equation here.
- Projection: $V = [a(0), La(0), \cdots], W = [L^{-1}a(0), a(0), La(0)].$ $L^{-1}a(0) \approx \int_{0}^{+\infty} e^{t(-\epsilon I + L)}a(0)dt.$
- First order approximation: $M\dot{a} = Ka + \Sigma \zeta(t)$.
- K is related to the correlation length of a(t).
- In general, the elements of M and K are statistics of a(t).
- Nonlocal statistics can also be incorporated.

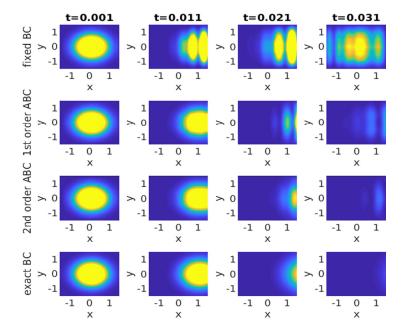
Part II. Reduced-order modeling for electron dynamics

Chu, Weiqi, and Xiantao Li. "Reduced-order modeling approach for electron transport in molecular junctions." *Journal of Chemical Theory and Computation* 16.6 (2020): 3746-3756.
Chu, Weiqi, and Xiantao Li. "A projection-based reduced-order method for electron transport problems with long-range interactions." *The Journal of Chemical Physics* 155.11 (2021).
Wu, Xiaojie, and Xiantao Li. "Absorbing boundary conditions for the time-dependent Schrödinger-type equations in R 3." *Physical Review E* 101.1 (2020): 013304.
Li, Xiantao. "Absorbing boundary conditions for time-dependent Schrödinger equations." *The Journal of chemical physics* 150.11 (2019).

Absorbing boundary conditions

- Semi-discrete formulation: $i \frac{d}{dt} \psi = H \psi$. $H = \begin{bmatrix} H_{I,I} & H_{I,E} \\ H_{E,I} & H_{E,E} \end{bmatrix}$. I: interior; E: exterior
- Exact time-dependent DtN: $i \frac{d}{dt} \psi_I = H_{I,I} \psi_I i \int_0^t \Gamma(t-\tau) \psi_I(\tau) d\tau$.
- Krylov subspace + Galerkin ⇒ Absorbing (transparent) boundary conditions





Electron transport

- Electron transport in open quantum system
 - a quantum system that interacts with another quantum system (bath)
- How to avoid a large number of variables from the bath?
 - RoM--> find closed equations to describe the system with much fewer variables.
- Time-dependent Schrödinger equation: $\partial_t \hat{\psi}(t) = -i\hat{H}(t)\hat{\psi}(t)$
- Liouville-von Neumann (LvN) equation: $\partial_t \hat{\rho}(t) = -i \left(\hat{H}(t) \hat{\rho}(t) \hat{\rho}(t) \hat{H}(t) \right)$
- Density matrix operator $\hat{\rho}(t) = \sum_{j} n_{j} \hat{\psi}(t) \hat{\psi}(t)^{*}$
- Real-space realization: $\rho(x, x', t) = \langle x | \hat{\rho}(t) | x' \rangle$, $H(x, x', t) = \langle x | \hat{H}(t) | x' \rangle$
- Charge density: $n(x,t) = \rho(x,x,t)$

Wave-function approach vs density-matrix approach

• WF: restrict the wave functions to the center region and formally eliminate the part of the wave functions in the bath) (Kurth et al. PRB, 2005). Similar to absorbing boundary conditions.

Issues:

> The number of wave functions is proportional to the number of electrons.

➤ The wave functions are often extended.

> The initialization of the wave functions.

DM: restrict the density-matrix to the center region

Advantages:

> The dimension of the reduced density-matrix only depends on the size of the center region

> The initialization is straightforward. $\rho(0) \propto f\left(-\frac{H}{k_{B}T}\right)$.

Potential issue: it can be a dense matrix. (Hope for local structure).

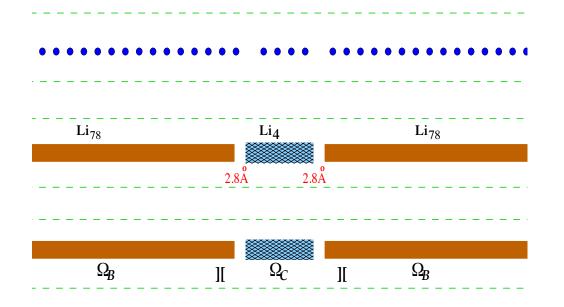
• Discretize *x* and use a matrix representation

PennState

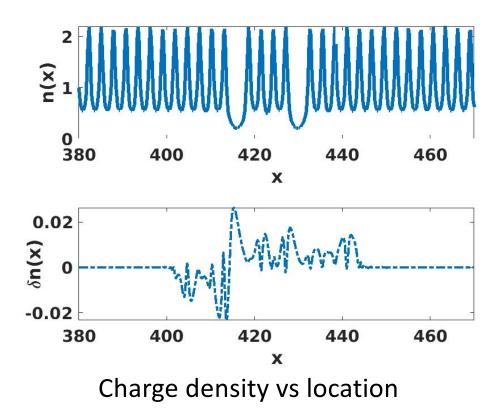
 $\partial_t \rho(t) = -i[H[n(t), t], \rho(t)]$

- Matrix representation: ρ , $H \in \mathbb{C}^{N \times N}$ and $n = \text{diag}(\rho)$
- Transient (non-equilibrium) nature: external control $U_{ext}(t)$
- Coupling with the bath $\rho = \begin{bmatrix} \rho_S & \rho_{BS} \\ \rho_{SB} & \rho_B \end{bmatrix}$, $\dim\{\rho_B\} \gg \dim\{\rho_S\}$

- Charge density *n* extends to the entire bath.
- The charge perturbation $\delta n = n n_0$ is compact near the junction area.



A one-dimensional molecular junction that contains three Lithium chains



PennState Perturbed dynamics (Linear response)

- Perturbed density matrix $\delta \rho(t) = \rho(t) \rho_0$
- Linear response $\delta H(t) = H(t) H_0$, $[H_0, \rho_0] = 0$
- Perturbed LvN equation after dropping higher order terms $\partial_t \delta \rho(t) = -i([H_0, \delta \rho(t)] + [\delta H(t), \rho_0] + [\delta H(t), \delta \rho_-])$
- The bracket is generalized quantum commutator

 $[A,B] = A^*B - B^*A$

How does reduced-order modeling come in?

$$\text{LvN Equation:} \quad i\frac{d}{dt} \begin{pmatrix} \delta\rho_{LL} & \delta\rho_{LC} & \delta\rho_{LR} \\ \delta\rho_{CL} & \delta\rho_{CC} & \delta\rho_{CR} \\ \delta\rho_{RL} & \delta\rho_{RC} & \delta\rho_{RR} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} H_{LL} & H_{LC} & 0 \\ H_{CL} & H_{CC} & H_{CR} \\ 0 & H_{RC} & H_{RR} \end{pmatrix}, \begin{pmatrix} \delta\rho_{LL} & \delta\rho_{LC} & \delta\rho_{LR} \\ \delta\rho_{CL} & \delta\rho_{CC} & \delta\rho_{CR} \\ \delta\rho_{RL} & \delta\rho_{RC} & \delta\rho_{RR} \end{pmatrix} \end{bmatrix} + \Theta.$$

- The equation in the left bath $i\partial_t \delta\rho_{LL} = [H_{LL}, \delta\rho_{LL}] + H_{LC}\delta\rho_{CL} - \delta\rho_{LC}H_{CL} = [H_{LL}, \delta\rho_{LL}] + [H_{LC}, \delta\rho_{CL}].$
- Since the matrix H_{LC} is short ranged, the input can be regarded as **low dimensional**.
- The off-diagonal block:

PennState

•

 $i\partial_t \delta \rho_{LC} = H_{LL} \,\delta \rho_{LC} - \delta \rho_{LL} H_{LC} + H_{LC} \delta \rho_{CC} - \delta \rho_{LC} H_{CC} + \Theta_{LC}(t).$

- In practice, we only need $\delta \rho_{LL} H_{LC}$, which is a **low-dimensional output**.
- This is a reduced-order modeling problem.

• Solution subspace and test subspace $V, W \in \mathbb{C}^{N \times n}$, $N \gg n$

$$\circ \ \delta
ho(t) = V D(t) V^*, \ D = D^*$$

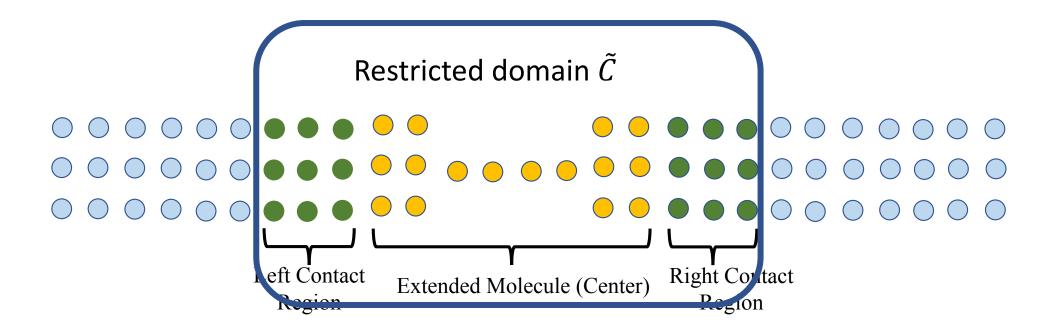
 $\circ W^* \partial_t \delta \rho(t) W = W^* (-i([H_0, \delta \rho(t)] + [\delta H(t), \rho_0])) W$

• Reduced dynamics for $D \in \mathbb{C}^{n \times n}$

 $\partial_t D(t) = -i[H_{\text{eff}}(t), D(t)] - i\Theta(t)$

- Effective Hamiltonian $H_{eff} = (W^*V)^{-1}W^*HV$
- Driven term $\Theta(t) = (W^*V)^{-1}W^*[\delta H(t), \rho_0]W(V^*W)^{-1}$
- How do we pick subspaces *V* and *W*?
 - A domain decomposition-based strategy

- Include contact region (green) into subspace domain
- Select solution subspace $V = [0_{\text{blue}}, ; I_{\text{green+yellow}}]$
- Coarse-grained variables $D = V^* \delta \rho V = \delta \rho_{\tilde{C}}$



• Green's function $G(z) = (zI - H)^{-1}$ is related to the density matrix

$$\rho = \frac{1}{2\pi i} \oint_{\mathbb{C}} \mathbf{G}(z) dz$$

Advanced Green's function

$$G^{A}(\varepsilon) = \lim_{\mathrm{Im}(\varepsilon) \to 0_{-}} (\varepsilon I - H_{0})^{-1}$$

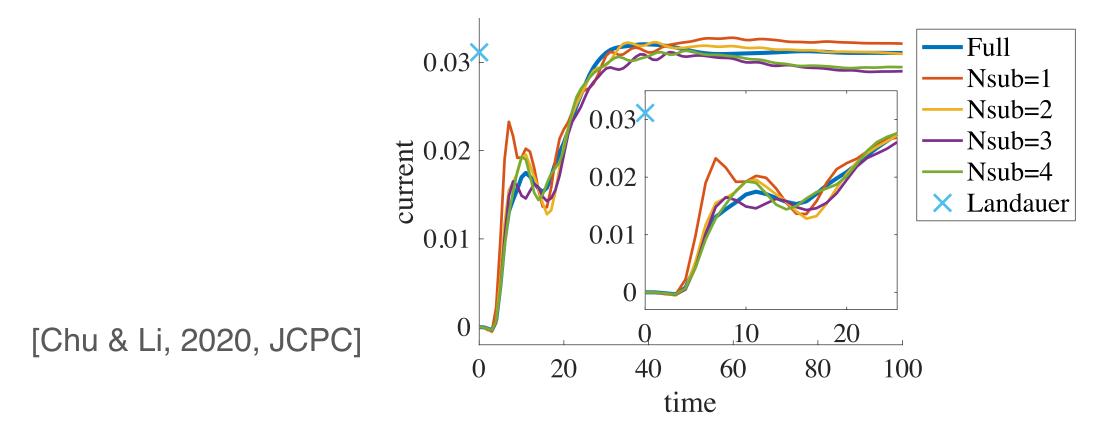
- Test space $W = (\varepsilon I H_0)^{-1} V, \varepsilon \in \mathbb{C}$
- We require $Im(\varepsilon) < 0$ to maintain stability (Chu & Li 2020 JCTC)

• With *W* and *V* ready, one can simplify terms in the driven LvN eq:

 $\partial_t D = -i[H_{\text{eff}}, D] - i\Theta$

- A partition of *H* based on the domain decomposition $H = \begin{bmatrix} H_S & H_{BS} \\ H_{SD} & H_D \end{bmatrix}$
- Effective Hamiltonian $H_{eff} = H_S + \Sigma(\varepsilon)$
- Self-energy $\Sigma(\varepsilon) = H_{SB}(\varepsilon I H_B)^{-1}H_{BS}$ reflects energy enters
- Non-homogenous term $\Theta = (\varepsilon^* I H_{eff}) W^* [\delta H(t), \rho_0] W(\varepsilon I H_{eff})$
- Σ , Θ can be computed fast using selective inversion (boundary element).

- Simulation of a DC circuit: constant bias $U_L = -U_R = 0.1$ a.u.
- The electron current: $J(x_i) = -\text{Im}(\rho(x_i, x_{i+1}) / \Delta x)$



- Coulomb interactions play an important role in electron transport and other quantum observations, such as Coulomb blockade.
- Dependence on the electron density must be taken into consideration.
 - $H[n] = -\frac{1}{2}\nabla^2 + V_H[n] + V_{XC}[n] + V_{nuclei} + U_{ext}(t)$

 $\circ \quad \delta H[n] = V_H[\delta n] + V_{XC}[n] - V_{XC}[n_0] + U_{ext}(t)$

- \circ n_0 is the charge density without the external potential
- The Coulomb force is a long-range force. Particles in the far end of bath have an influence on the system.

• Hartree potential:
$$V_H[n](x) = \int_{\Omega} \frac{n(x')}{|x-x'|} dx$$

• Uniform grids in contact regions (previous case) will not work

•
$$\Omega_{\tilde{C}} = \Omega_C \cup \{x_n = x_R + na\} \cup \{x_n = x_L - na\}$$

XXXX XXXXXX XXXX

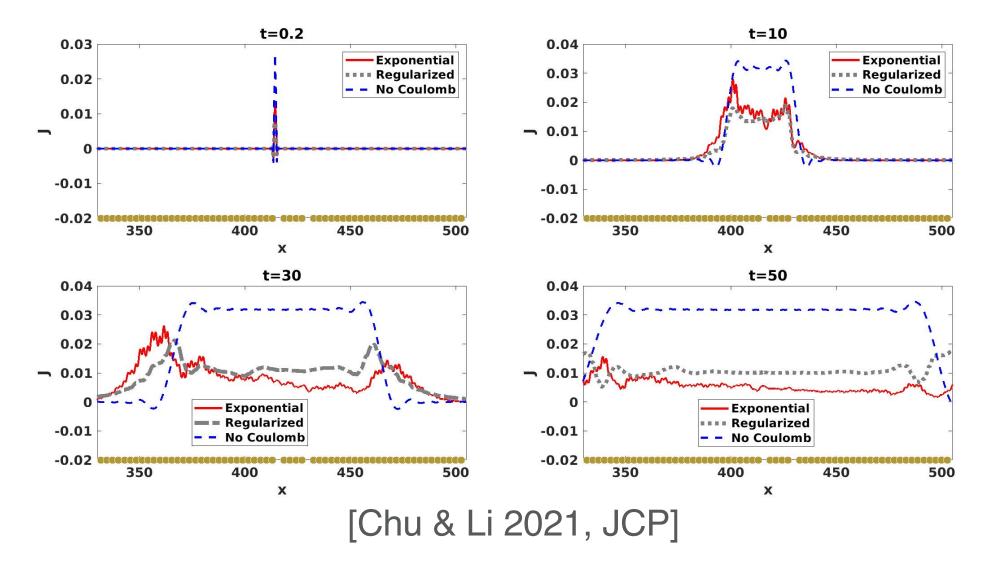
• Recover the global electron density using a spline interpolation with logarithmic grids

•
$$\Omega_{\tilde{C}} = \Omega_C \cup \{x_R + a^n\} \cup \{x_L - a^n\}$$

x x x x x x x x x x x

• Reconstruct the Hartree part using quadrature

$$V_H[n](x) = \int_{\Omega} \frac{n(x')}{|x - x'|} dx \approx \sum_{x_{\alpha} \in \Omega_{\widetilde{C}}} w(x, x_{\alpha}) n(x_{\alpha})$$



Summary

- Molecular dynamics
 - Generalized Langevin equation can be derived from a projection procedure
 - Appropriate projection so that the marginal density is easier to fit.
 - Moment matching for the kernel and the FDT
 - A Galerkin projection: more robust; automatically satisfies the FDT
 - Open issues: Stability; Accuracy; Adaptivity.
- Electron dynamics
 - Partition of the density matrix
 - Reduced-order modeling to efficiently mimic the effect of the bath
 - Subspace projection; Green's function.
 - Open issues: The subspace can only involve $H_{C,L}(zI H_{L,L})^{-1}H_{L,C}$. But not higher order inverse.