

# Quantum Algorithms for Solving PDEs

Xiantao Li

**Department of Mathematics**  
Pennsylvania State University

SIAM NNP



# Outline

- Motivation
- Simulating quantum dynamics
- From lattice dynamics to Schrödinger equation
- General non-unitary non-dissipative differential equations
- Extension to stochastic/steady state/nonlinear dynamics

## The Quantum Computing Promises:

- **2025: The Year of Quantum:** significant milestone/accelerating interest/investment in the quantum field.
- **Overcoming Classical Barriers:** potential to overcome the barrier faced by classical processors.
- **Natural Simulation:** natural fit to simulate quantum chemistry and quantum physics (**exponential speedup**).

QM models (TDSE)

- $\frac{d}{dt} |\psi\rangle = -iH|\psi\rangle$
- 1<sup>st</sup> quantization:  $H = \sum_j -\frac{\nabla_j^2}{2} + V(x)$
- 2<sup>nd</sup> quantization:  

$$H = \sum_{ij} t_{ij} a_i^\dagger a_j + \sum_{ijkl} V_{ijkl} a_i^\dagger a_j^\dagger a_k a_l$$
- Transverse-Field Ising  

$$H = -J \sum_{ij} \sigma_i^z \sigma_j^z - \sum_i \sigma_i^x$$



## Scientific computing tasks

### Large-scale ODE/PDEs

- $u_t = \kappa u_{xx}, u_{tt} = c^2 u_{xx}$

- Nonlinearity

- Stochastic dynamics

- Feedback control

- Machine-learning models

$$x' = \mathcal{N}N_\theta(x, t).$$

- Optimizations

- Sampling.

*These models are very different from TDSE*

*Can quantum computers simulate classical dynamics?*

*Express them as Schrödinger equations!*

# Time-dependent Schrödinger equation

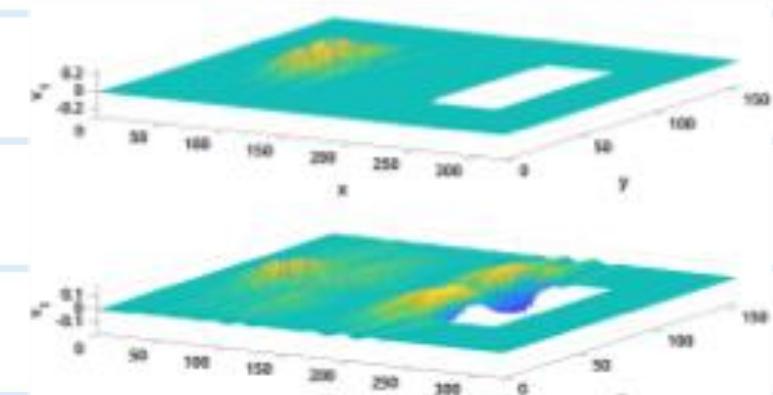
- TDSE:  $\frac{d}{dt} |\psi\rangle = -iH|\psi\rangle$ .  $H$ : self-adjoint (Hermitian)  $H^\dagger = H$
- State-of-the-art: the evolution in  $\mathbb{C}^N$  can be efficiently simulated: Cost =  $T\|H\| \log N \text{ polylog } \frac{1}{\epsilon}$
- Algorithms:
  - Operator splitting (Trotter):  $e^{-it(A+B)} \approx e^{-itA}e^{-itB}$ . (Childs et al PRX 2021).
    - each exactly implemented by gate operations
  - Block encoding:  $U_A = \frac{1}{\alpha} \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$
  - QSVT:  $U_A = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix} \rightarrow U_{p(A)} = \begin{bmatrix} p(H) & \cdot \\ \cdot & \cdot \end{bmatrix}$  (Gilyén et al. 2019)
  - LCU (Childs-Wiebe 2012).
  - Approximate diagonalizations
- **Such a quantum speedup can be leveraged if the problem can be reduced to TDSE**

# Wave equations

- Wave equation.  $\partial_t^2 u = c^2 \nabla^2 u$
- Factorization:  $-\nabla_h^2 = \mathbf{Q}^T \mathbf{Q}$ ,  **$\mathbf{Q}$  sparse – rectangle matrix**
- $\Rightarrow \frac{d}{dt} \psi = -i \mathbf{H} \psi$ ,  $\mathbf{H} = -\begin{bmatrix} & \mathbf{Q}^T \\ \mathbf{Q} & \end{bmatrix}$ . Costa et al 2019. Babbush, et al. 2023.
- Vector-valued discretized wave equation:  $\ddot{u}_j = -\sum_{k=1}^N D_{j-k} u_k$ . Or  $\ddot{u} = -Du$ .
- Dispersion relation.  $\widehat{D}(k) = \sum_j D_j e^{-ik \cdot j}$ .
- Trigonometric factorization:  $D_j = \frac{1}{|B|} \int_B \widehat{D}(k) e^{ik \cdot j} dk = \frac{1}{|B|} \int_B \widehat{Q}(k)^\dagger \widehat{Q}(k) e^{ik \cdot j} dk$
- Exact factorization (Fejer-Rietz factorization).  $\widehat{D}(k) = \sum_j D_j z^j$ ,  $\widehat{Q}(k) = \sum_j Q_j z^j$
- $\widehat{D}(k) = |\widehat{Q}(k)|^2 \Rightarrow D = Q^\dagger Q$  (matrix multiplication by convolution)

# From wave equations to Schrödinger (Li, PRL)

- $\ddot{u} = -Du$  (Lattice waves/finite difference for acoustic and elastic wave equations)
- $D = Q^\dagger Q \Rightarrow \frac{d}{dt} \psi = -iH\psi, H = -\begin{bmatrix} & Q^T \\ Q & \end{bmatrix}$
- Example:  $\ddot{u}_j = -\frac{1}{6}u_{j-2} + u_{j-1} - \frac{5}{3}u_j + u_{j+1} - \frac{1}{6}u_{j+2}$ .
- $\hat{D}(k) = 2(1 - \cos k) - \frac{1}{3}(1 - \cos 2k)$ .  $\hat{Q} = q_0 + q_1 e^{-ik} + q_2 e^{-i2k}$ .
- $Q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ \vdots \\ q_2 \\ \vdots \\ q_2 \end{bmatrix}_{(N+2) \times N}$
- In general,  $Q = \sum_j A_j \otimes Q_j$ .  $A_j$ : binary entries labelling neighbors. (3d FCC,  $\Delta$  hexagonal lattice)
- The optimal Hamiltonian simulation algorithms apply.
- Overall quantum simulation complexity: logarithmic in system size and precision, linear in time \* Debye frequency
- Linear wave equations are quantum easy.
- **What about general ODEs ? (dissipative, stable, unstable, non-autonomous, ODEs).**



# Linear dissipative ODEs/PDEs

- Linear PDEs  $u_t = Lu$ . E.g.,  $u_t = \kappa u_{xx}$ ,  $u_{tt} = c^2 u_{xx}$ ,  $iu_t = -\frac{\nabla^2}{2}u + V(x)u - i\Sigma u$
- Spatial discretization  $\rightarrow$ :  $x' = Ax$ ,  $A = -iA_0 + A_1$ 
  - $A_0$  and  $A_1$  Hermitian,  $A_0^\dagger = A_0$ ,  $A_1^\dagger = A_1$ ,  $A_1 \leq 0 \Rightarrow \frac{d}{dt}||x(t)|| \leq 0$ .
- **Schrödingerization:** Jin-Liu-Yu, PRL 2024.
  - $\psi(t, p) = e^p x(t)$ ,  $p \geq 0$ .
  - $\partial_t \psi = -iA_0 \psi + A_1 \partial_p \psi = -iH\psi$ ,
  - With the right BCs,  $H$  is Hermitian. ( $\partial_p$  can be turned into a skew Hermitian operator)
- Example: the heat equation
  - $\partial_t u = \kappa \partial_{xx} u$ .  $A_0 = 0$ ,  $A_1 = \kappa \partial_{xx}$
  - After Schrödingerization:  $\partial_t \psi(t, x, p) = \kappa \partial_{p_{xx}} \psi$ .
  - To recover the solution:  $u(t, x) = e^{-p_*} \psi(t, x, p_*)$ .
- Linear combination of Hamiltonian evolution An-Liu-Lin, PRL 2024.
  - $e^{-iA_0 t - A_1 t} = \int \frac{1}{\pi(1+k^2)} e^{-itA_0 - itkA_1} dk$

# An EEE framework ( ArXiv:2507.10285) for $u_t = \mathcal{L}(t)u$

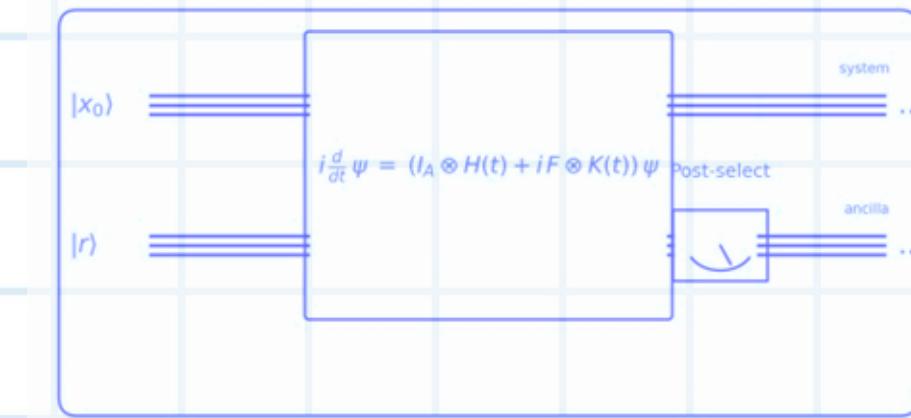
- $x' = -iH(t)x + K(t)x, , H^\dagger = H, K^\dagger = K$
- A general dilation scheme

|                           |                                                                                    |                             |                                                 |
|---------------------------|------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------|
| $(l  \otimes I$           | $\mathcal{T}e^{-i \int_0^t I_a \otimes H(s) + i F_a \otimes K(s) ds}$              | $ r) \otimes  x_0\rangle$   | $= \mathcal{T}e^{\int_0^t A(s) ds}  x_0\rangle$ |
| Evaluation                | <i>Evolution</i>                                                                   | <i>Encoding</i>             | <i>Exact ODE Evolution</i>                      |
| $(l $ : linear functional | $F_a^\dagger = -F_a$ , in $\mathcal{H}_a$<br>$\mathcal{H}_a$ dense in $\mathbb{X}$ | $ r) = f(p) \in \mathbb{X}$ |                                                 |

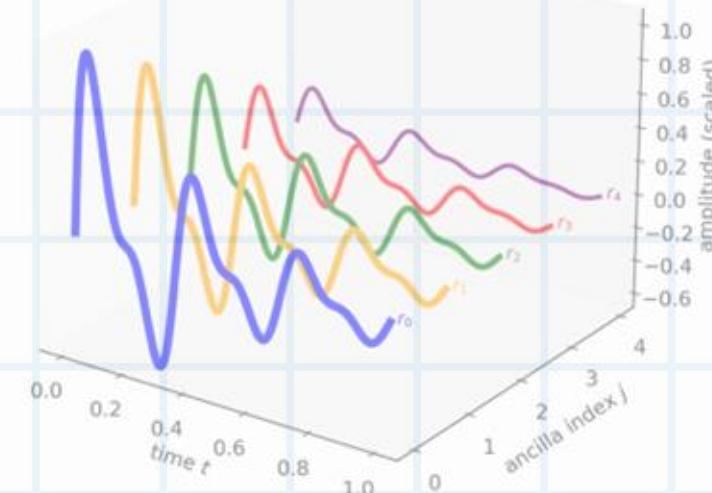
- **Theorem:**  $(l| \otimes I \mathcal{T}e^{-i \int_0^t I_a \otimes H(s) + i F_a \otimes K(s) ds} |r) \otimes I = \mathcal{T}e^{\int_0^t A(s) ds}$  if the moment conditions  $(l|F_a^k|r) = 1, \forall k \geq 0$ , are satisfied.
- Example:  $(l|r) = 1$  and  $F_a|r) = |r)$ .
- ROM perspective: engineering a reservoir that reproduces  $\mathcal{T}e^{\int_0^t A(s) ds}$  as an input/output map

# EEE workflow

- The overall circuit



- The final quantum state:  $\sum_j r_j |j\rangle \otimes |x(t)\rangle$ .



- Algorithms for the unitary evolution
  - Operator-splitting, Dyson series, Magnus expansion, etc.
  - Qubitization, Q singular value transform, linear combination of unitaries.
  - All these algorithms lead to  $O(\log N)$  complexity

# Fulfilling the moment conditions

$$(l|F_a^k|r) = 1, \forall k \geq 0$$

- **Schrödingerization:**

- $F = -\frac{\partial}{\partial p}$ , skew Hermitian on  $[0, +\infty)$  if  $f(0) = 0$ .
- $|r\rangle = e^{-p}$ ,  $(l|f = e^{p_*}f(p_*)$ . Moment conditions are satisfied.
- $|r\rangle \notin \mathcal{H}_a$ . Numerical issue: minimize the boundary effect.
- Invariance under unitary transformation:  $(l|U^{-1}, UF_a U^{-1}, U|r)$  still satisfy the moment condition.
- Let  $U$  be Fourier transform.

- $U|r\rangle = \frac{1}{k+i}$ ,  $U \circ F \circ U^{-1} = ik$ ,  $(l|U^{-1}f = \text{Res}_{k=-i}\hat{f}(k)$

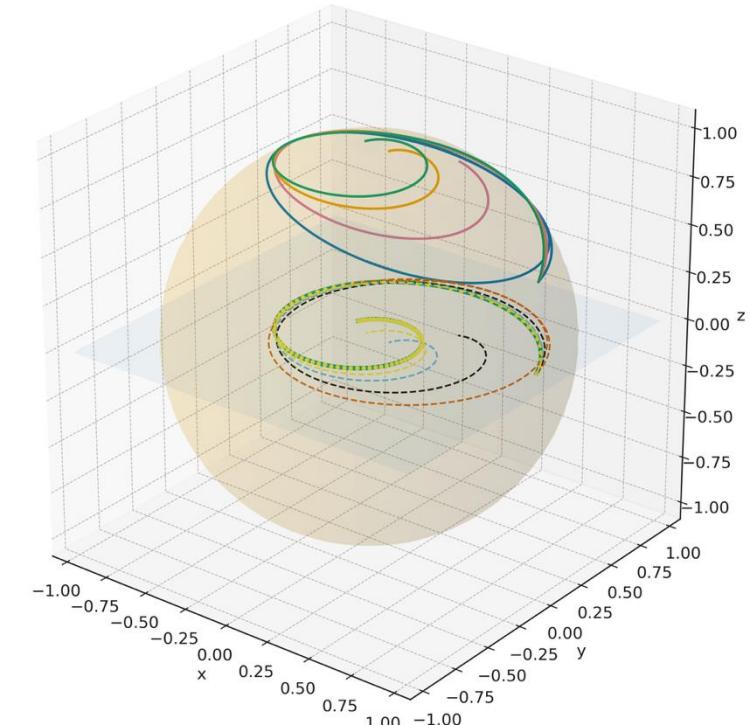
- This is the LCHS

• **Are there other choices?** **Many**

| Space $H_A$       | Dilation operators  | Generator $F$                                           | Right vector $ r\rangle$                                             | Evaluation $(l $                        |
|-------------------|---------------------|---------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| $H^1(0, 1)$       | Differential        | $\theta(p\partial_p + \frac{1}{2})$                     | $p^{1/\theta-1/2}$                                                   | $(l f = 2^{1/\theta-1/2}f(\frac{1}{2})$ |
| $L^2(\mathbb{R})$ | Integral            | $(Ff)(p) = \int_{\mathbb{R}} pe^{-\theta p-q } f(q) dq$ | $e^{a(\theta)p}$                                                     | $(l f = f(0)$                           |
| $L^2(\mathbb{R})$ | Pseudo-differential | $-i(-\Delta)^{\theta}$                                  | $e^{i\xi_0 x}, \xi_0 = e^{i\pi/(4\theta)}$                           | $(l f = f(0)$                           |
| $\mathcal{B}$     | Bargmann–Fock       | $\theta(a^\dagger - a)$                                 | $\exp\left(\frac{z^2}{2} - \frac{z}{\theta}\right)$                  | $(l f = f(0)$                           |
| $\ell^2$          | Difference          | $(Ff)_n = \theta(f_n - f_{n-1})$                        | $\{\lambda_\theta^n\}_{n \geq 0}, \lambda = \frac{\theta}{1+\theta}$ | $(l f = f_0$                            |

# From moment fulfilling to universal approximation

- These families of fulfilling operators  $\rightarrow$  Exact dilation methods
- $(l| \otimes I \mathcal{T} e^{-i \int_0^t I_a \otimes H(s) + i F_a \otimes K(s) ds} |r) \otimes I = \mathcal{T} e^{\int_0^t A(s) ds}$
- By  $\epsilon$  approximating  $|r\rangle$  in the Hilbert space, we find  $\epsilon$  approximations of  $x(t)$  using TDSE
- ***How is this implemented for general ODEs?***

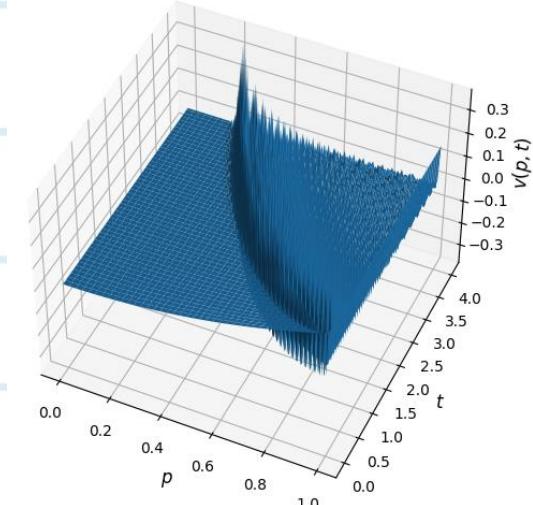


# Differential operator on $[0, 1]$

- $F_\theta = \theta \left( p \partial_p + \frac{1}{2} \right), |r) = p^{\frac{1}{\theta} - \frac{1}{2}}, (l|f = 2^{\frac{1}{\theta} - \frac{1}{2}} f \left( \frac{1}{2} \right)$ . ( $\theta$ : tunable parameters to min complexity).
- Example:  $u_t = au_x + u_{xx}$ ,
  - PBC on  $[0, 2\pi]$ .
  - $A_0 = a\partial_x, A_1 = \partial_{xx}$ .
  - Dilated system:  $w(t, x, p): \partial_t w = a\partial_x w + p\partial_{xxp} w + \frac{1}{2}\partial_{xx} w$ .  $w(0, x, p) = u(0, x)p^{\frac{1}{\theta} - \frac{1}{2}}, w(t, x, 1) = 0$ .
- Finite-difference with summation-by-parts (SBP) property
  - $F_\theta = \frac{\theta}{2} \{ \partial_p, p \} \approx \theta F_h = \frac{\theta}{2} \{ D_h, P \}$
  - Combined Hamiltonian  $\tilde{H} = I \otimes H + i\theta F_h \otimes K \Rightarrow i\Psi = -i \tilde{H}\Psi$
- Initial condition:  $|r) \approx |r\rangle \propto \sum_j p_j^\beta |j\rangle, \beta = \frac{1}{\theta} - \frac{1}{2}$ .  $w(0, x, p) = |r\rangle \otimes |x_0\rangle$
- Boundary condition:  $w(t, x, 1) = 0$ . To ensure that  $\theta F_h$  is skew Hermitian.

# Finite speed of propagation property

- The transport equation from  $F: u_t = -pu_p - \frac{1}{2}u$ ,  $p \in (0,1)$ .
- The error comes from the boundary effect.
- Method of characteristics:  $\dot{p} = -p, \dot{u} = -\frac{1}{2}u$ .
- Boundary effective arrives at a point  $p_*$  at time  $t_* = \log \frac{1}{p_*}$ .
- Finite speed propagation for the finite difference method.



Consider the dilated dynamics:  $\psi_t = -i(I_A \otimes H + \theta F_h \otimes K)\psi$ , with initial condition supported at the boundary. Assume that  $\eta = \frac{e\theta K_{max}t}{1-p_*} < 1$ .  $h = \frac{1}{M}$  and  $p_* = 1 - mh$ . Then

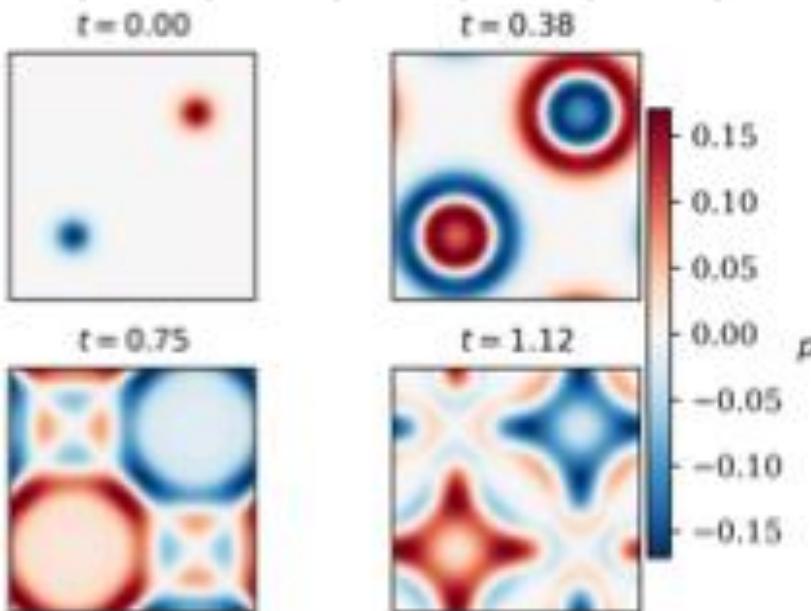
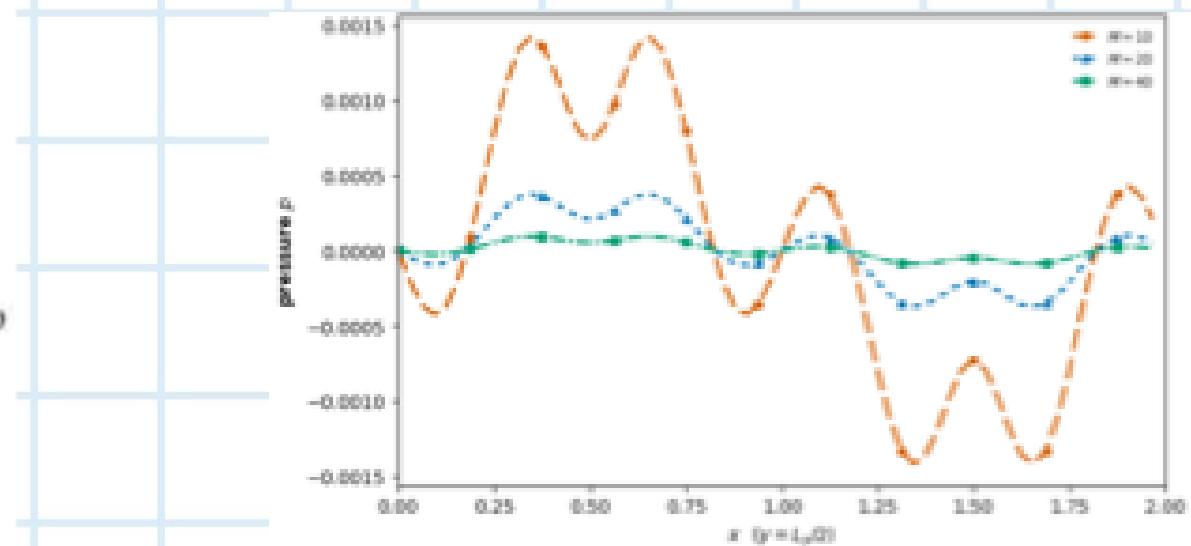
$$\|\langle i | \otimes I \psi(t) | \psi_0 \rangle\| < C \eta^m, \forall ih < p_*.$$

Therefore:  $M = \Omega(\log \frac{1}{\epsilon})$  is enough to suppress the boundary effect

The boundary effect can be delayed by geometrically refined grids

# Example

- Two-dimensional Maxwell Viscoelastic Wave equation
- Strain, momentum and stress  $(\varepsilon, p, \sigma)$  with viscous stress.



The convergence with the ancilla dimension.

# Summary

- Linear differential equations are mostly quantum-easy (theoretically).
- The procedure is motivated by reduced-order modeling.
- Some nonlinear equations are quantum-easy. (smoothing/weakly nonlinear/no resonance)
- For general nonlinear equations:  $e^{O(T)} O(\log N)$ . Brüstle-Wiebe 2025.

Many remaining questions

- Implementation of dilation methods on near term device
- Integrate quantum algorithms with error mitigation schemes
- Improving the convergence radius for nonlinear problems.