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The Quantum Computing Promises:

 2025: The Year of Quantum: significant
milestone/accelerating interest/
investmentin the quantum field.

* Overcoming Classical Barriers: potential
to overcome the barrier faced by classical
processors.

* Natural Simulation: natural fit to simulate
quantum chemistry and quantum physics
(exponential speedup).
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Scientific computing tasks
Large-scale ODE/PDEs

* Up = Ky, Upe = CoUyy

* Nonlinearity

e Stochastic dynamics

* Feedback control

* Machine-learning models
x' = NNg(x,t).

* Optimizations
* Sampling.

These models are very different from
TDSE

Can quantum computers simulate
classical dynamics?

Express them as Schrodinger equations!



Time-dependent Schrodinger equation

+ TDSE: - 1)) = —iH[)). H: self-adjoint (Hermitian) H' = H
« State-of-the-art: the evolution in CV can be efficiently simulated: Cost = T||H|| log N polylog%

* Algorithms:
« Operator splitting (Trotter): e "it(A+B) ~ o~itAo—itB (GChijlds et al PRX 2021).
* each exactly implemented by gate operations

* Block encoding: Uy, =ilH ]
casvru, = [ 5 vy = [PUD ] (Gilyén et al.2019)

 LCU (Childs-Wiebe 2012).
* Approximate diagonalizations

 Such a quantum speedup can be leveraged if the problem can be reduced to TDSE



Wave equations

« Wave equation. 0/ u = c?V?u

* Factorization: —V,%z Q" Q, Q sparse — rectangle matrix

T
¢« = %1[) = —iHy, H = —[ ¢ ] Costa et al 2019. Babbush, et al. 2023.

Q

* Vector-valued discretized wave equation: il; = — N1 Dj_yuy.Oru = —Du.

» Dispersion relation. D(k) = ),; D; e/,
+ Trigonometric factorization: D; = l?%lfBﬁ(k)e”"jdk = I?%IIB O()TO(k) e™*Jdk

» Exact factorization (Fejer-Rietz factorization). D(k) = Y, D; z/,Q(k) =X, Q; 2/

« D(k) = |@(k)|2 = D = Q70 (matrix multiplication by convolution)



From wave equations to Schrodinger (Li, PRL)

it = —Du (Lattice waves/finite difference for acoustic and elastic wave equations)
T
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In general, Q = Zj Aj ® Q;. Aj: binary entries labelling neighbors. (3d FCC, cu iicruguiiac waoy,

The optimal Hamiltonian simulation algorithms apply.

Pverall quantum simulation complexity: logarithmic in system size and precision, linear in time * Debye
requency

Linear wave equations are quantum easy.
What about general ODEs ? (dissipative, stable, unstable, non-autonomous, ODEs).



Linear dissipative ODEs/PDEs

: . v2 :
 Linear PDEsu, = Lu. E.8., Uy = KUy, Upp = CoUpy, iUy = - u+ Vix)u —iZu

» Spatial discretization = : x' = Ax, A= —iA, + A
* Ay, andA; Hermitian, Ag = AO,AJIr =A4,4,<0= %||x(t)|| <0.

* Schrodingerization: Jin-Liu-Yu, PRL 2024.

« Y(t,p) =ePx(t),p=0.

* 0y = —iAgy + A0,y = —iHY,

* With the right BCs, H is Hermitian. (d,, can be turned into a skew Hermitian operator)
* Example: the heat equation

* 0;Uu = KO0,,Uu.Ayg = 0,4 = KO,

* After Schrodingerization: 0,.Y(t, x,p) = k0,,,1).

 Torecover the solution: u(t,x) = e P<y(t, x, p,).
* Linear combination of Hamiltonian evolution An-Liu-Lin, PRL 2024.
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An EEE framework ( ArXiv:2507.10285)
foru, = L(t)u

c x' = —iH®)x+K({)x, HH =H KT =K
* Ageneral dilation scheme

(1 Te_ifot a®H($)+iF,QK(s)ds  |r) ®|x,) — Tef(fA(S)dslx())
Evaluation  Evolution Encoding Exact ODE Evolution
(L|: linear functional FaT = —F, inH, I7) = f(p) €X
H, densein X

.t . t
* Theorem: ([| X[ Te™" Jo la®@H(S)+IFaQK()ds| ) & | = Telo A9)4s it the moment conditions
(L|EX|r) = 1,Vk = 0, are satisfied.
« Example: (I|r) = 1and F,|r) = |r).

fOtA(s)ds

« ROM perspective: engineering a reservoir that reproduces J'e as an input/output map



EEE workflow

 The overall circuit * Thefinal quantum state: ) ; 77|j) ® [x(©)).

* Algorithms for the unitary evolution
* Operator-splitting, Dyson series, Magnus expansion, etc.
* Qubitization, Q singular value transform, linear combination of unitaries.
* Allthese algorithms lead to O(log N ) complexity



Fulfilling the moment conditions
(L|E¥|r) = 1,Yk =0

Schrodingerization:

e F = —% , skew Hermitian on [0, +o) if f(0) = 0.

* |r) =e7P, (l|f = ePf(p,). Moment conditions are satisfied.
* |r) & H, .Numericalissue: minimize the boundary effect.

Invariance under unitary transformation: (I|U "1, UF,U~, U|r) still satisfy the moment

condition.

Let U be Fourier transform.

+ Ulr) =-—, UoFoU™ =ik, (lJU"f = Resg—_if (k)

e Thisisthe LCHS

Are there other choices?

Many
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From moment fulfilling to universal approximation

These families of fulfilling operators =» Exact dilation methods

A &1 Te—ifotla®H(s)+iFa®K(s)dslr) QI = g—vefOtA(s)ds

By € approximating |r) in the Hilbert space,
we find € approximations of x(t) using TDSE

How is this implemented for general ODEs?
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Differential operator on [0,1]

1 1_1 11 1
Fg =0 (pap + 5) Jr) =pé 2, (l|f =26 2f (E) . (0: tunable parameters to min complexity).

Example: u; = au, + Uy,
e PBCon|[0,27].
° AO = aaxrAl — 6xx.

* Dilated system: w(t,x,p): 0w = ad,w + p0y,w + % O,xW. w(0,x,p) = u(0,x)pe " 2,w(t,x,1) = 0.

Finite-difference with summation-by-parts (SBP) property
4 b
« Fp = E{ap,p} ~ OF, = ~{Dp, P}
« Combined Hamiltonian H = | @ H + i0F, @ K = ¥ = —i HY

Initial condition: |1r) = |r) « Y pjﬁ|j),,3 =% - %.W(O,x, p) =|r) Q |xg)

Boundary condition: w(t,x, 1) = 0. To ensure that 6F,, is skew Hermitian.



Finite speed of propagation property

vip, t)

The transport equation from F: u, = —pu,, — %u, p € (0,1).

The error comes from the boundary effect.

. .. . . 1
Method of characteristics: p = —p,u = —Z U

. . . ! 1
Boundary effective arrives at a point p, attime t, = logp—.

* Finite speed propagation for the finite difference method.

Consider the dilated dynamics: ), =9—i(1/t1 ® H + 0F, ® K)y, with initial condition supported
atthe boundary. Assumethatn = homaxl 1 p = % and p, = 1 — mh. Then

1- *
1G1® () o)l < € 4™, ¥ ih < p,
Therefore: M = Q(logi) is enough to suppress the boundary effect

The boundary effect can be delayed by geometrically refined grids



Example

* Two-dimensional Maxwell Viscoelastic Wave equation

 Strain, momentum and stress (&, p, o) with viscous stress.
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The convergence with the ancilla dimension.



Summary

* Linear differential equations are mostly quantum-easy (theoretically).

* The procedure is motivated by reduced-order modeling.

* Some nonlinear equations are quantum-easy. (smoothing/weakly nonlinear/no resonance)
* For general nonlinear equations: eO(T)O(log N). Brustle-Wiebe 2025.

Many remaining questions

* Implementation of dilation methods on near term device

* Integrate quantum algorithms with error mitigation schemes

* Improving the convergence radius for nonlinear problems.
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