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Outline

• Motivation
• Simulating quantum dynamics
• From lattice dynamics to Schrödinger equation
• General non-unitary non-dissipative differential equations
• Extension to stochastic/steady state/nonlinear dynamics



Scientific computing tasks

Large-scale ODE/PDEs

• 𝑢𝑡 = 𝜅𝑢𝑥𝑥 , 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥

• Nonlinearity

• Stochastic dynamics

• Feedback control

• Machine-learning models 
𝑥′ = 𝑁𝑁𝜃 𝑥, 𝑡 . 

• Optimizations

• Sampling. 

These models are very different from 
TDSE

Can quantum computers simulate 
classical dynamics?

Express them as Schrödinger equations!

The Quantum Computing Promises:
• 2025: The Year of Quantum: significant 

milestone/accelerating interest/ 
investment in the quantum field.

• Overcoming Classical Barriers: potential 
to overcome the barrier faced by classical
processors. 

• Natural Simulation: natural fit to simulate 
quantum chemistry and quantum physics 
(exponential speedup). 

QM models (TDSE)

•
𝑑

𝑑𝑡
𝜓 = −𝑖𝐻 𝜓

• 1st quantization: 𝐻 = σ𝑗 −
∇𝑗

2

2
+ 𝑉 𝑥

• 2nd quantization: 
𝐻 = ෍

𝑖𝑗

𝑡𝑖𝑗𝑎𝑖
†𝑎𝑗 + ෍

𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙 𝑎𝑖
†𝑎𝑗

†𝑎𝑘𝑎𝑙

• Transverse-Field Ising
𝐻 = −𝐽 ෍

𝑖𝑗

𝜎𝑖
𝑧𝜎𝑗

𝑧 − ෍

𝑖

𝜎𝑖
𝑥



Time-dependent Schrödinger equation

• TDSE: 𝑑

𝑑𝑡
𝜓 = −𝑖𝐻|𝜓⟩. 𝐻: self-adjoint (Hermitian) 𝐻† = 𝐻

• State-of-the-art: the evolution in ℂ𝑁  can be efficiently simulated:  Cost = 𝑇||𝐻|| log 𝑁 𝑝𝑜𝑙𝑦𝑙𝑜𝑔
1

𝜖
 

• Algorithms:
• Operator splitting (Trotter): 𝑒−𝑖𝑡 𝐴+𝐵 ≈ 𝑒−𝑖𝑡𝐴𝑒−𝑖𝑡𝐵. (Childs et al PRX 2021).

• each exactly implemented by gate operations

• Block encoding:  𝑈𝐴 =
1

𝛼

𝐻 ∙
∙ ∙

 

• QSVT:𝑈𝐴 =
𝐻 ∙
∙ ∙

→ 𝑈𝑝(𝐴) =
𝑝(𝐻) ∙

∙ ∙
 (Gilyén 𝑒𝑡 𝑎𝑙. 2019)

• LCU (Childs-Wiebe 2012). 
• Approximate diagonalizations

• Such a quantum speedup can be leveraged if the problem can be reduced to TDSE



Wave equations

• Wave equation. 𝜕𝑡
2𝑢 = 𝑐2∇2𝑢

• Factorization: −𝛁𝒉
𝟐= 𝑸𝑻𝑸, 𝑸 𝐬𝐩𝐚𝐫𝐬𝐞 − 𝐫𝐞𝐜𝐭𝐚𝐧𝐠𝐥𝐞 𝐦𝐚𝐭𝐫𝐢𝐱

• ⇒
𝒅

𝒅𝒕
𝝍 = −𝒊𝑯𝝍, 𝑯 = −

𝑸𝑻

𝑸
.  Costa et al 2019. Babbush, et al. 2023.

• Vector-valued discretized wave equation: ሷ𝑢𝑗 = − σ𝑘=1
𝑁 𝐷𝑗−𝑘𝑢𝑘. Or ሷ𝑢 = −𝐷𝑢. 

• Dispersion relation. ෡𝐷 𝑘 = σ𝑗 𝐷𝑗 𝑒−𝑖𝑘⋅𝑗. 

• Trigonometric factorization: 𝐷𝑗 =
1

|𝐵|
׬

𝐵
෡𝐷 𝑘 𝑒𝑖𝑘⋅𝑗𝑑𝑘 =

1

|𝐵|
׬

𝐵
෠𝑄 𝑘 † ෠𝑄 𝑘 𝑒𝑖𝑘⋅𝑗𝑑𝑘

• Exact factorization (Fejer-Rietz factorization). ෡𝐷 𝑘 = σ𝑗 𝐷𝑗 𝑧𝑗 , ෠𝑄 𝑘 = σ𝑗 𝑄𝑗 𝑧𝑗

• ෡𝐷 𝑘 = ෠𝑄 𝑘
2

⇒  𝐷 = 𝑄†𝑄 (matrix multiplication by convolution)



From wave equations to Schrödinger (Li, PRL)
• ሷ𝑢 = −𝐷𝑢 (Lattice waves/finite difference for acoustic and elastic wave equations)

• 𝐷 = 𝑄†𝑄 ⇒ 𝒅

𝒅𝒕
𝝍 = −𝒊𝑯𝝍, 𝑯 = −

𝑸𝑻

𝑸

• Example: ሷ𝑢𝑗 = −
1

6
𝑢𝑗−2 + 𝑢𝑗−1 −

5

3
𝑢𝑗 + 𝑢𝑗+1 −

1

6
𝑢𝑗+2. 

• ෡𝐷(𝑘) = 2(1 − cos 𝑘) −
1

3
1 − cos 2𝑘 . ෠𝑄 = 𝑞0 + 𝑞1𝑒−𝑖𝑘 + 𝑞2𝑒−𝑖2𝑘 .

• 𝑄 =

𝑞0

𝑞1 𝑞0

𝑞2 𝑞1 ⋱

𝑞2 ⋱

⋱ (𝑁+2)×𝑁

 

• In general, 𝑄 = σ𝑗 𝐴𝑗 ⊗ 𝑄𝑗. 𝐴𝑗: binary entries labelling neighbors. (3d FCC, 2d hexagonal lattice)  
• The optimal Hamiltonian simulation algorithms apply. 
• Overall quantum simulation complexity: logarithmic in system size and precision, linear in time * Debye 

frequency
• Linear wave equations are quantum easy. 
• What about general ODEs ? (dissipative, stable, unstable, non-autonomous,  ODEs).



Linear dissipative ODEs/PDEs

• Linear PDEs 𝑢𝑡 = 𝐿𝑢. E.g., 𝑢𝑡 = 𝜅𝑢𝑥𝑥 , 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 , 𝑖𝑢𝑡 = −
∇2

2
𝑢 + 𝑉 𝑥 𝑢 − 𝑖Σ𝑢 

• Spatial discretization ➔ :  𝑥′ = 𝐴𝑥, 
•  𝐴0 and 𝐴1 Hermitian,  𝐴0

† = 𝐴0, 𝐴1
† = 𝐴1, 𝐴1 ≤ 0 ⇒

𝑑

𝑑𝑡
𝑥 𝑡 ≤ 0.

• Schrödingerization: Jin-Liu-Yu, PRL 2024.
• 𝜓 𝑡, 𝑝 = 𝑒𝑝𝑥(𝑡), p ≥ 0.
• 𝜕𝑡𝜓 = −𝑖𝐴0𝜓 + 𝐴1𝜕𝑝𝜓 = −𝑖𝐻𝜓,  
• With the right BCs, H is Hermitian. (𝜕𝑝 can be turned into a skew Hermitian operator)

• Example: the heat equation
• 𝜕𝑡𝑢 = 𝜅𝜕𝑥𝑥𝑢. 𝐴0 = 0, 𝐴1 = 𝜅𝜕𝑥𝑥

• After Schrödingerization: 𝜕𝑡𝜓 𝑡, 𝑥, 𝑝 = 𝜅𝜕𝑝𝑥𝑥𝜓. 
• To recover the solution: 𝑢 𝑡, 𝑥 = 𝑒−𝑝∗𝜓 𝑡, 𝑥, 𝑝∗ .

• Linear combination of Hamiltonian evolution An-Liu-Lin, PRL 2024.
• 𝑒−𝑖𝐴0𝑡−𝐴1𝑡 = ׬

1

𝜋(1+𝑘2)
𝑒−𝑖𝑡𝐴0−𝑖𝑡𝑘𝐴1𝑑𝑘

𝐴 = −𝑖𝐴0 + 𝐴1



An EEE framework  ( ArXiv:2507.10285)
for 𝑢𝑡 = ℒ 𝑡 𝑢

• 𝑥′ = −𝑖𝐻(𝑡)𝑥 + 𝐾(𝑡)𝑥, , 𝐻† = 𝐻, 𝐾† = 𝐾

• A general dilation scheme 

• Theorem: (𝑙| ⊗ 𝐼 𝒯𝑒−𝑖 0׬
𝑡

𝐼𝑎⊗𝐻 𝑠 +𝑖𝐹𝑎⊗𝐾 𝑠 𝑑𝑠 𝑟 ⊗ 𝐼 = 𝒯𝑒0׬
𝑡

𝐴 𝑠 𝑑𝑠  if the moment conditions 
(𝑙|𝐹𝑎

𝑘 𝑟 = 1, ∀𝑘 ≥ 0, are satisfied.  
• Example: 𝑙 𝑟 = 1 and 𝐹𝑎 𝑟 = 𝑟 . 

• ROM perspective: engineering a reservoir that reproduces 𝒯𝑒0׬
𝑡

𝐴 𝑠 𝑑𝑠  as an input/output map

= 𝒯𝑒0׬
𝑡

𝐴 𝑠 𝑑𝑠|𝑥0⟩
𝐸𝑥𝑎𝑐𝑡 𝑂𝐷𝐸 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑟 ⊗|𝑥0⟩          
𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔

𝑟 = 𝑓 𝑝 ∈ 𝕏 

𝒯𝑒−𝑖 0׬
𝑡

𝐼𝑎⊗𝐻 𝑠 +𝑖𝐹𝑎⊗𝐾(𝑠)𝑑𝑠

𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 𝐹𝑎
† = −𝐹𝑎 , in ℋ𝑎

ℋ𝑎  dense in 𝕏

(𝑙| ⊗ 𝐼 
Evaluation 

(𝑙|: linear functional



EEE workflow

• The overall circuit

• Algorithms for the unitary evolution
• Operator-splitting, Dyson series, Magnus expansion, etc.
• Qubitization, Q singular value transform, linear combination of unitaries.
• All these algorithms lead to 𝑂(log 𝑁 ) complexity

• The final quantum state: σ𝑗 𝑟𝑗 𝑗 ⊗ 𝑥 𝑡 .



Fulfilling the moment conditions 
(𝑙|𝐹𝑎

𝑘 𝑟 = 1, ∀𝑘 ≥ 0

• Schrödingerization: 
• 𝐹 = −

𝜕

𝜕𝑝
 , skew Hermitian on 0, +∞  if 𝑓 0 = 0.

• 𝑟 = 𝑒−𝑝, (𝑙|𝑓 = 𝑒𝑝∗𝑓 𝑝∗ .  Moment conditions are satisfied. 
• 𝑟 ∉ ℋ𝑎  . Numerical issue: minimize the boundary effect. 

• Invariance under unitary transformation: (𝑙 𝑈−1, 𝑈𝐹𝑎𝑈−1, 𝑈 𝑟) still satisfy the moment 
condition.

• Let 𝑈 be Fourier transform. 
• 𝑈 𝑟 =

1

𝑘+𝑖
,  𝑈 ∘ 𝐹 ∘ 𝑈−1 = 𝑖𝑘, (𝑙|𝑈−1𝑓 = 𝑅𝑒𝑠𝑘=−𝑖

መ𝑓(𝑘)

• This is the LCHS

• Are there other choices?        Many



From moment fulfilling to universal approximation

• These families of fulfilling operators ➔ Exact dilation methods 

• (𝑙| ⊗ 𝐼 𝒯𝑒−𝑖 0׬
𝑡

𝐼𝑎⊗𝐻 𝑠 +𝑖𝐹𝑎⊗𝐾 𝑠 𝑑𝑠 𝑟 ⊗ 𝐼 = 𝒯𝑒0׬
𝑡

𝐴 𝑠 𝑑𝑠

• By 𝜖 approximating |𝑟) in the Hilbert space,
 we find 𝜖 approximations of 𝑥(𝑡) using TDSE

• How is this implemented for general ODEs?



Differential operator on [0,1]

•  𝐹𝜃 = 𝜃 𝑝𝜕𝑝 +
1

2
, 𝑟 = 𝑝

1

𝜃
 −

1

2, (𝑙|𝑓 = 2
1

𝜃
 −

1

2
 𝑓

1

2
. (𝜃: tunable parameters to min complexity).

• Example: 𝑢𝑡 = 𝑎𝑢𝑥 + 𝑢𝑥𝑥 , 
• PBC on 0,2𝜋 . 

• 𝐴0 = 𝑎𝜕𝑥 , 𝐴1 = 𝜕𝑥𝑥. 

• Dilated system: 𝑤 𝑡, 𝑥, 𝑝 : 𝜕𝑡𝑤 = 𝑎𝜕𝑥𝑤 + 𝑝𝜕𝑥𝑥𝑝𝑤 +
1

2
𝜕𝑥𝑥𝑤.  𝑤 0, 𝑥, 𝑝 = 𝑢 0, 𝑥 𝑝

1

𝜃
 −

1

2, 𝑤 𝑡, 𝑥, 1 = 0. 

• Finite-difference with summation-by-parts (SBP) property 
• 𝐹𝜃 =

𝜃

2
𝜕𝑝, 𝑝 ≈ 𝜃𝐹ℎ =

𝜃

2
𝐷ℎ , 𝑃

• Combined Hamiltonian ෩H = 𝐼 ⊗ 𝐻 + 𝑖𝜃𝐹ℎ ⊗ 𝐾 ⇒ 𝑖Ψ = −𝑖 ෩𝐻Ψ

• Initial condition: 𝑟 ≈ 𝑟 ∝ σ𝑗 𝑝𝑗
𝛽

𝑗 , 𝛽 =
1

𝜃
 −

1

2
. 𝑤 0, 𝑥, 𝑝 = 𝑟 ⊗ 𝑥0

• Boundary condition:  𝑤 𝑡, 𝑥, 1 = 0. To ensure that 𝜃𝐹ℎ  is skew Hermitian.



Finite speed of propagation property

• The transport equation from 𝐹: 𝑢𝑡 = −𝑝𝑢𝑝 −
1

2
𝑢, 𝑝 ∈ 0,1 . 

• The error comes from the boundary effect.

• Method of characteristics: ሶ𝑝 = −𝑝, ሶ𝑢 = −
1

2
𝑢. 

• Boundary effective arrives at a point 𝑝∗ at time 𝑡∗ = log
1

𝑝∗
.

• Finite speed propagation for the finite difference method.
Consider the dilated dynamics: 𝜓𝑡 = −𝑖 𝐼𝐴 ⊗ 𝐻 + 𝜃𝐹ℎ ⊗ 𝐾 𝜓, with initial condition supported 
at the boundary.   Assume that 𝜂 =

e𝜃𝐾𝑚𝑎𝑥𝑡

1−𝑝∗ 
< 1. ℎ =

1

𝑀
 𝑎𝑛𝑑 𝑝∗ = 1 − 𝑚ℎ. Then 

|| 𝑖 ⊗ 𝐼𝜓 𝑡 𝜓0 || < 𝐶 𝜂𝑚, ∀ 𝑖ℎ < 𝑝∗. 

Therefore: 𝑀 = Ω(log
1

𝜖
) is enough  to suppress the boundary effect

The boundary effect can be delayed by geometrically refined grids



Example 

• Two-dimensional Maxwell Viscoelastic Wave equation

• Strain, momentum and stress 𝜀, 𝑝, 𝜎  with viscous stress.  

The convergence with the ancilla dimension.



Summary 

• Linear differential equations are mostly quantum-easy (theoretically).

• The procedure is motivated by reduced-order modeling. 

• Some nonlinear equations are quantum-easy. (smoothing/weakly nonlinear/no resonance)

• For general nonlinear equations: 𝑒𝑂 𝑇 𝑂(log 𝑁). Brüstle-Wiebe 2025. 

Many remaining questions

• Implementation of dilation methods on near term device

• Integrate quantum algorithms with error mitigation schemes

• Improving the convergence radius for nonlinear problems. 
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